Penta-Ocean - Concentric - Alchmex Joint Venture

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Monthly EM&A Report

October 2014

(Version 2.0)

Certified By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	TABLE OF CONTENTS	Page
EXECU'	TIVE SUMMARY	
Introduct	ion	1
	ality monitoring works	
1. INT	TRODUCTION	2
	and	
C	TER QUALITY MONITORING	
Monitori Monitori	ng Requirementsng Locations	3 2
	ng Equipment	
	ng Parameters	
	ng Frequency	
	ng Methodology	
	ry Analytical Methods	
	Requirementsnd Observation	
	d Action Plan	
LIST OI	F TABLES	
Table 2.1	Location of Water Quality Monitoring Stations	
Table 2.2		
Table 2.3		
Table 2.4 Table 2.5		
1 4010 2.0	iviculous for Laboratory Amarysis for water samples	
LIST OI	F FIGURES	
Figure 1	Locations of Water Quality Monitoring Stations	
LIST OI	F APPENDIX	
Appendix	x A Action and Limit Level for Water Quality	
Appendix		
Appendix	- · ·	
Appendix		
Appendix	· · · · · · · · · · · · · · · · · · ·	
Appendix Appendix	· · · · · · · · · · · · · · · · · · ·	
Appendix		

EXECUTIVE SUMMARY

Introduction

1. This is the 35th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Contract No. KL/2010/02 – Kai Tak Development – Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS) Improvement Works" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in October 2014.

Water quality monitoring works

- 2. Bioremediation works for the Project have been completed in 2014 and water quality monitoring during the post-treatment phase for the Project was performed in accordance with the Kai Tak Development Schedule 3 EM&A Manual and Particular Specification of Contract No. KL/2010/02 and the monitoring results were checked and reviewed.
- 3. Summary of the non-compliance of the reporting month is tabulated in Table I.

Table I Summary Table for Non-compliance Recorded in the Reporting Month

Parameter	No. of Ex	No. of Exceedance Due to the Project Action		No. of Exceedance Due to the Project	
	Action Level	Limit Level	Action Level	Limit Level	Taken
Water	0	0	0	0	N/A

Water Quality

4. Bioremediation works have been completed in 2014. Post-treatment water quality monitoring was conducted as scheduled in the reporting month except water quality monitoring on 1 October 2014 which was cancelled due to closure of construction site on 1 October 2014 (National Day). No Action/Limit Level exceedance was recorded.

Contract No. KL/2010/02 Kai Tak Development -Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS) Improvement Works (Phase 1) Monthly EM&A Report – October 2014

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares.
- 1.2 Civil Engineering and Development Department (CEDD) had completed an Environmental Impact Assessment (EIA) study for KTD under Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works Investigation, Design and Construction (hereafter called "Schedule 3 EIA Report"). The Schedule 3 EIA Report was approved under Environmental Impact Assessment Ordinance (EIAO) in March 2009.
- 1.3 Penta-Ocean Concentric Alchmex Joint Venture (PCAJV) was awarded as the main contractor of the Contract No. KL/2010/02 Kai Tak Development Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (Phase 1) (hereinafter referred to as the Project) and Cinotech Consultants Limited was commissioned by PCAJV to undertake the water quality monitoring for bioremediation works for the Project in accordance with EM&A Manual and Particular Specification.
- 1.4 According to the Particular Specification, Section 25 Environmental Protection (PS25) and Environmental Monitoring and Audit Manual (EM&A Manual) for Kai Tak Developemnt, Section 7.3.3, water quality monitoring is required for the period from commencement of and throughout the duration of Bioremediation works and during the first year after completion of the bioremediation works.
- 1.5 This is the 35th Monthly EM&A report summarizing the post-treatment water quality monitoring works for the Project in October 2014. The other EM&A information of Contract No. KL/2010/02 is presented in the Monthly EM&A Reports under Schedule 3 EIA (Contract No. KLN/2013/16).

2. WATER QUALITY MONITORING

Monitoring Requirements

- 2.1 Water quality monitoring is required during the first year after completion of the bioremediation works. Marine water quality monitoring shall be carried out three times per week, at mid-flood and mid-ebb tides at the locations likely to be affected by bioremediation.
- 2.2 The interval between two sets of monitoring shall not be less than 36 hours except where there are exceedances of AL levels, in which case monitoring frequency shall be increased.
- 2.3 For all the monitoring stations, sampling should be taken at 3 water depths, namely 1m below the water surface, mid depth and 1m above the sea bed. For stations that are less than 3m in depth, only the mid depth sample should be taken. Shall the water depth is less than 6m, in which case the mid-depth station may be omitted.
- 2.4 At each monitoring station, duplicate samples shall be collected at each water depth. Sufficient volume of each water sample (not less than 1 litre) shall be collected for analysis to achieve the required detection limit.

Monitoring Locations

- 2.5 According to EM&A Manual, Section 7.2.2 and PS25, two monitoring locations in the vicinity of the works area (i.e. one 100m upstream and one 100m downstream of the works area) shall be selected as the impact monitoring stations. Three control stations shall also included for comparing the water quality from potentially impacted sites with the ambient water quality. The control stations shall be sited outside the area of influence of the works, as far as practical, not affected by any other works.
- 2.6 The indicative locations of water quality monitoring stations approved by EPD on 30 November 2011 are shown on **Figure 1**. The coordinates of the water quality monitoring stations are presented in Table 2.1.

Table 2.1 Location for Marine Water Quality Monitoring Locations

Manitaring Stations	Coor	dinates
Monitoring Stations	Easting	Northing
W1	838772.203	820413.345
W2	838741.308	820330.290
W3	838749.902	820278.615
W4	840663.244	818653.087
W5	840792.106	818435.346

Contract No. KL/2010/02 Kai Tak Development -Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS) Improvement Works (Phase 1) Monthly EM&A Report – October 2014

Monitoring Equipment

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 2.7 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 2.8 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 2.9 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 2.10 Salinity compensation was built-in in the DO equipment.

Turbidity

2.11 Turbidity was measured *in situ* by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

2.12 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

2.13 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

pН

2.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

2.15 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Position System

2.16 A hand held differential Global Positioning System (GPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements. GPS was calibrated at checkpoint (Quarry Bay Survey Nail at Easting 840683.49 and Northing 816709.55) to ensure the monitoring station was at the correct position before taking measurement and water samples.

Sample Container and Storage

2.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles with appropriate preservatives added, packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 2.18 All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 2.19 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 2.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.

2.21 Table 2.2 summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 2.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality System	YSI 6820-C-M and 6920-M	2
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters

2.22 The monitoring parameters to be measured *in-situ* and in laboratory are summarized in Table 2.3.

Table 2.3 Water Quality Monitoring Parameters

In-situ Measurement	Laboratory Measurement
Dissolved Oxygen	Suspended Solids (SS)
рН	Nitrate-nitrogen (NO3-N)
Water Temperature	Cadmium (Cd)
Salinity	Chromium (Cr)
Turbidity	Copper (Cu)
	Mercury (Hg)
	Nickel (Ni)
	Lead (Pb)
	Silver (Ag)
	Zinc (Zn)

2.23 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Frequency

2.24 Table 2.4 summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring.

Table 2.4 Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit	Depth	Frequency
W1 W2 W3 W4 W5	In-situ Measurement DO, mg/L DO Saturation, % Salinity, ppt Turbidity, NTU pH water temperature, °C Laboratory Measurement SS, mg/L NO ₃ -N, mg/L Cd, mg/L Cu, mg/L Cu, mg/L Ni, mg/L Ni, mg/L Ag, mg/L Zn, mg/L	 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is between 3-6m, omit mid-depth sampling. 	• 3 times per week (each series of sampling / measurement should not be less than 36 hours)

2.25 The water quality monitoring schedule in the reporting period is provided in **Appendix** C.

Monitoring Methodology

- 2.26 The monitoring stations were accessed using survey boat to within 3 m by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly. The in-situ measurements at predetermined depths were carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 2.27 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 2.24 was also recorded.

Laboratory Analytical Methods

2.28 The testing of all parameters was conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, lowest detection limit and limit of reporting are provided in Table 2.5.

Table 2.5 Methods for Laboratory Analysis for Water Samples

Determinant	Proposed Method	Limit of	Lowest
		Reporting	Detection Limit
Cadmium (Cd)	In-house Method SOP 053	0.1 μg/L	0.1 μg/L
Chromium (Cr)	(ICP-ES) and SOP 076	0.2 μg/L	0.2 μg/L
Copper (Cu)	(ICP-MS)	0.2 μg/L	0.2 μg/L
Silver (Ag)	Ref. Method: APHA 19e 3030F 3b and 3120B,	0.2 μg/L	0.2 μg/L
Nickel (Ni)	USEPA 3005A & 6020A]	0.2 μg/L	0.2 μg/L
Zinc (Zn)	0.5211100001100002011	0.4 μg/L	0.4 μg/L
Lead (Pb)		0.2 μg/L	0.2 μg/L
Mercury (Hg)		0.2 μg/L	0.2 μg/L
Suspended Solids (SS)	APHA 17ed 2540 D	0.5 mg/L	0.5 mg/L
Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056	0.01 mg NO ₃ -N/L	0.01 mg NO ₃ -N/L
	(FIA)		
	[Ref. Method: APHA 20e		
	4500-NO ₃ - F (FIA)]		

QA/QC Requirements

Decontamination Procedures

2.29 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

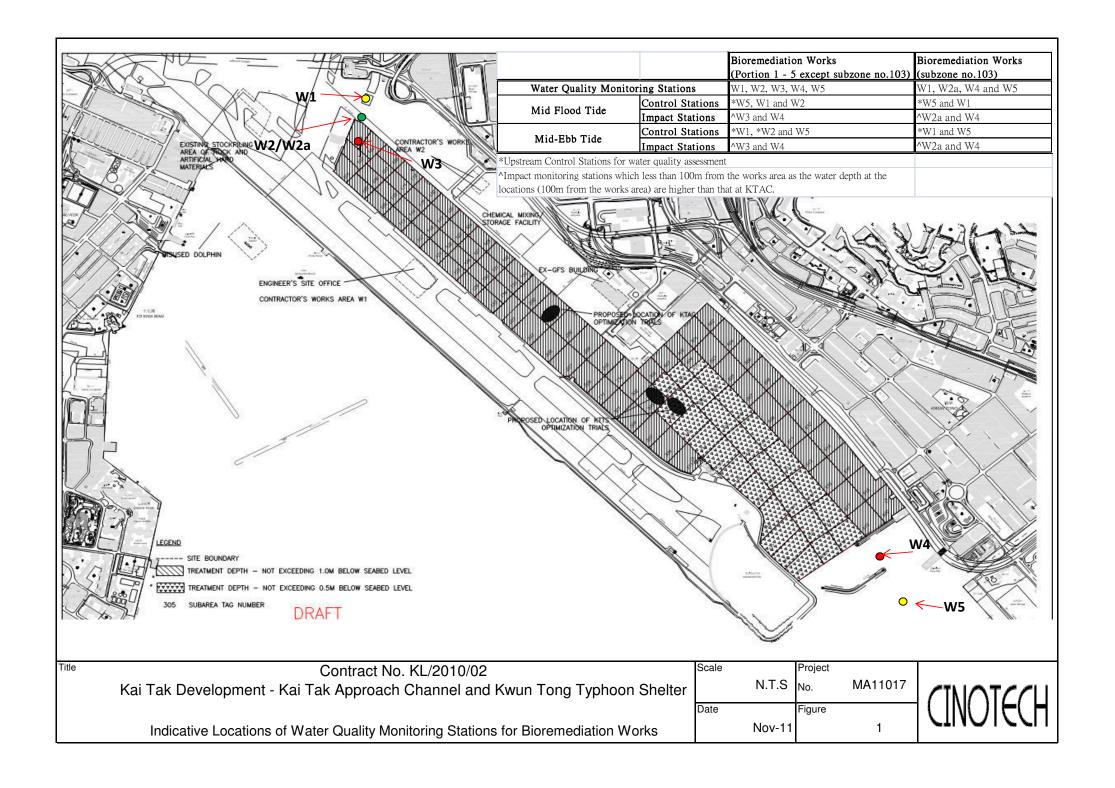
2.30 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

Quality Control Measures for Sample Testing

- 2.31 The samples testing were performed by HOKLAS accredited laboratories. The following quality control programme was performed by the laboratories for each batch of samples:
 - ♦ Method blank;
 - ♦ Sample duplicate (at 5% level i.e. one for every 20 samples);
 - ♦ Sample spike (at 5% level i.e. one for every 20 samples); and
 - ♦ Quality control samples.

Results and Observation

- 2.32 The established Action/Limit Levels for the water quality monitoring works based on the baseline water quality monitoring results under Contract No. KLN/2009/10 is presented in **Appendix A.**
- 2.33 Post-treatment water quality monitoring was conducted as scheduled in the reporting month except water quality monitoring on 1 October 2014 which was cancelled due to closure of construction site on 1 October 2014 (National Day). No Action/Limit Level exceedance was recorded.
- 2.34 The monitoring data and graphical presentations of water quality monitoring results are shown in **Appendix D** and **Appendix E** respectively.
- 2.35 The weather during the sampling at mid-ebb tide and mid-flood tide are presented in the following table:


Date	Weather Condition	
	Mid-Ebb	Mid-Flood
3 October 2014	Sunny	Sunny
6 October 2014	Sunny	Sunny
8 October 2014	Sunny	Fine
10 October 2014	Sunny	Sunny
13 October 2014	Sunny	Sunny
16 October 2014	Sunny	Fine
18 October 2014	Sunny	Sunny
20 October 2014	Sunny	Sunny
22 October 2014	Cloudy	Cloudy
24 October 2014	Sunny	Fine
27 October 2014	Sunny	Sunny
30 October 2014	Sunny	Sunny

- 2.36 No special phenomena near the monitoring stations were observed which might affect the monitoring results during the monitoring works.
- 2.37 The laboratory testing report and QC report are provided in **Appendix F and Appendix G respectively**.

Event and Action Plan

2.38 If there is Action / Limit Level exceedance in any parameters of the water quality, the actions in accordance with the Event and Action Plan as shown in **Appendix H** will be carried out.

FIGURES

APPENDIX A ACTION AND LIMIT LEVEL FOR WATER QUALITY

Appendix A - Action and Limit Levels for Marine Water Quality

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's	130% of upstream control station's
SS in mg/L	SS at the same tide of the same day	SS at the same tide of the same day
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same	turbidity at the same tide of the same
Turbidity in NTU	day	day
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at	nitrate-nitrogen (depth average) at
Nitrate-Nitrogen in mg/L	the same tide of the same day +	the same tide of the same day +
(depth average)	0.9mg/L of anticipated increase due	0.9mg/L of anticipated increase due
(deptil average)	to nitrate injection	to nitrate injection
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's	130% of upstream control station's
Heavy metals	level at the same tide of the same day	level at the same tide of the same day
	or	or
Cr	<u>24.0</u>	<u>40.7</u>
Cd	<u>0.8</u>	<u>1.5</u>
Cu	<u>54.8</u>	<u>95.0</u>
Zn	<u>120.0</u>	<u>150.0</u>
Ag	<u>0.5</u>	<u>0.8</u>
Hg	<u>5.1</u>	<u>8.7</u>
Ni	<u>36.8</u>	<u>71.3</u>
Pb	<u>46.0</u>	<u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

APPENDIX B
COPIES OF CALIBRATION
CERTIFICATES FOR WATER
QUALITY MONITORING

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/140802-1
Date of Issue: 2014-08-02
Date Received: 2014-08-02
Date Tested: 2014-08-02
Date Completed: 2014-08-02
Next Due Date: 2014-11-01

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No. Equipment No.

: 02D0126AA : W.03.01

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 11J100025

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 07E100029

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100900

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual

 In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APIIA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/140802-1
Date of Issue: 2014-08-02
Date Received: 2014-08-02
Date Tested: 2014-08-02
Date Completed: 2014-08-02
Next Due Date: 2014-11-01

Page:

2 of 2

Results:

1. Conductivity performance check

Specific C	Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading Theoretical Value			
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/140802-2
Date of Issue: 2014-08-02
Date Received: 2014-08-02
Date Tested: 2014-08-02
Date Completed: 2014-08-02
Next Due Date: 2014-11-01

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6920-M

Serial No.

: 03H1764AA

Equipment No.

: W.03.03

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 03H1461

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 08C100610

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 09M100672

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 07E

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/140802-2
Date of Issue:	2014-08-02
Date Received:	2014-08-02
Date Tested:	2014-08-02
Date Completed:	2014-08-02
Next Due Date:	2014-11-01

Page:

2 of 2

Results:

1. Conductivity performance check

Specific (Conductivity, µS/cm	Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading Theoretical Value			
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX C WATER QUALITY MONITORING SCHEDULE

Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Post-Treatment Water Quality Monitoring for Bioremediation Works in October 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Oct	2-Oct	3-Oct	4-Oct
			Water Quality Monitoring		Water Quality Monitoring	
			Mid-Flood *Cancelled		Mid-Ebb 7:17	
			Mid-Ebb *Cancelled		Mid-Flood 14:58	
5-Oct	6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 10:24		Mid-Ebb 11:59		Mid-Flood 7:27	
	Mid-Flood 17:04		Mid-Flood 18:13		Mid-Ebb 13:26	
12-Oct	13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct
	Water Quality Monitoring			Water Quality Monitoring		Water Quality Monitoring
	water Quarity Monitoring			water Quarity Monitoring		water Quanty Monitoring
	Mid-Flood 10:01			Mid-Ebb 6:06		Mid-Ebb 8:26
	Mid-Ebb 15:32			Mid-Flood 18:44		Mid-Flood 15:49
19-Oct	20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
	W. O. P. M. S.		W. O. P. M. Y.		W. O. F. M. in	
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 10:11		Mid-Ebb 11:25		Mid-Ebb 12:36	
	Mid-Flood 16:41		Mid-Flood 17:22		Mid-Flood 18:17	
26-Oct	27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
20 000	27 360	20 001	2, 00.	30 000	31 000	11107
	Water Quality Monitoring			Water Quality Monitoring		Water Quality Monitoring
	Mid-Flood 8:47			Mid-Flood 11:51		Mid-Ebb 6:45
	Mid-Ebb 14:27			Mid-Ebb 17:18		Mid-Flood 14:15

Remark: Reference was made to the tidal information of Hong Kong Observatory

^{*} The site was closed due to National Day

APPENDIX D
MARINE WATER QUALITY
MONITORING RESULTS

Appendix D - Action and Limit Levels for Marine Water Quality on 3 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level	
DO in mg/L (Bottom)	0.01	0.01	
	120% of upstream control station's SS at	130% of upstream control station's SS at	
CC in ma/I	the same tide of the same day	the same tide of the same day	
SS in mg/L (Bottom)	<u>W1: 19.3</u> and <u>W2: 17.8</u>	<u>W1: 20.9</u> and <u>W2: 19.2</u>	
(Bottom)	or	or	
	<u>20.4</u>	<u>29.3</u>	
	120% of upstream control station's	130% of upstream control station's	
	turbidity at the same tide of the same day	turbidity at the same tide of the same day	
Turbidity in NTU	<u>W1: 3.2</u> and <u>W2: 2.8</u>	<u>W1: 3.5</u> and <u>W2: 3.0</u>	
	or	or	
	<u>21.9</u>	<u>29.7</u>	
	120% of upstream control station's	130% of upstream control station's	
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the	
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of	
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate	
mg/L (depth average)	injection	injection	
	<u>W1: 3.80</u> and <u>W2: 3.84</u>	<u>W1: 4.05</u> and <u>W2: 4.09</u>	
	or	or	
	<u>5.9</u>	<u>7.1</u>	
	120% of upstream control station's level	130% of upstream control station's level	
Heavy metals	at the same tide of the same day	at the same tide of the same day	
	or	or	
Cr	W1: 2.6 and W2: 3.0 or 24.0	W1: 2.9 and W2: 3.3 or 40.7	
Cd	<u>W1: 0.4</u> and <u>W2: 0.6</u> or <u><i>0.8</i></u>	W1: 0.4 and W2: 0.7 or <u>1.5</u>	
Cu	W1: 7.9 and W2: 7.1 or 54.8	W1: 8.6 and W2: 7.7 or 95.0	
Zn	W1: 21.8 and W2: 21.6 or 120.0	W1: 23.7 and W2: 23.4 or 150.0	
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>	
Hg	W1: 0.4 and W2: 0.2 or 5.1	W1: 0.4 and W2: 0.3 or <u>8.7</u>	
Ni	W1: 2.3 and W2: 2.2 or 36.8	W1: 2.5 and W2: 2.4 or 71.3	
Pb	<u>W1: 1.8</u> and <u>W2: 1.4</u> or <u>46.0</u>	W1: 2.0 and W2: 1.6 or 82.6	

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 3 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 17.2</u>	<u>W5: 18.6</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 2.6</u>	<u>W5: 2.9</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 2.18</u>	<u>W5: 2.28</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Ticavy metais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.4</u> or <u>24.0</u>	<u>W5: 3.7</u> or <u>40.7</u>
Cd	<u>W5: 0.4</u> or <u>0.8</u>	<u>W5: 0.4</u> or <u>1.5</u>
Cu	<u>W5: 7.2</u> or <u>54.8</u>	<u>W5: 7.8</u> or <u>95.0</u>
Zn	<u>W5: 21.7</u> or <u>120.0</u>	<u>W5: 23.5</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.9</u> or <u>36.8</u>	<u>W5: 3.2</u> or <u>71.3</u>
Pb	<u>W5: 1.5</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 3 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salin	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	-	-	-	-	6.1	-	-		-	-	
W1	Sunny	Calm	07:31	Middle	0.7	26.8 26.7	26.8	7.2 7.2	7.2	28.6 28.8	28.7	89.3 89.4	89.4	6.1 6.1	6.1	0.1	2.7 2.7	2.7	2.7	16.0 16.1	16.1	16.1
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	
W2	Sunny	Calm	07:46	Middle	1.45	26.7 26.8	26.8	7.2 7.2	7.2	28.9 28.6	28.8	82.8 84.0	83.4	5.6 5.7	5.7	5.7	2.3 2.3	2.3	2.3	14.6 14.9	14.8	14.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	27.1 26.9	27.0	7.1 7.1	7.1	28.2 28.7	28.5	27.8 30.3	29.1	1.9 2.1	2.0	2.0	1.4 1.5	1.5		8.2 8.2	8.2	
W3	Sunny	Calm	07:52	Middle	-		-	-	-	-	-	-	-	-	-	2.0	-	-	2.2	-	-	9.0
				Bottom	3	25.6 25.7	25.7	6.8 6.8	6.8	30.5 30.5	30.5	65.6 64.3	65.0	4.5 4.4	4.5	4.5	2.8 2.9	2.9		9.6 9.9	9.8	
				Surface	1	21.2 21.1	21.2	7.3 7.3	7.3	31.1 31.3	31.2	131.3 131.3	131.3	9.7 9.7	9.7	9.6	1.7 1.7	1.7		9.5 9.9	9.7	
W4	Sunny	Calm	08:08	Middle	3.5	20.8 20.8	20.8	7.3 7.2	7.3	32.7 32.7	32.7	129.8 126.9	128.4	9.6 9.4	9.5	5.0	1.5 1.5	1.5	1.6	7.0 6.7	6.9	8.6
				Bottom	6	20.2 20.1	20.2	7.1 7.1	7.1	33.6 33.9	33.8	118.6 108.8	113.7	8.8 8.1	8.5	8.5	1.5 1.5	1.5		9.2 9.4	9.3	
				Surface	1	20.7 20.8	20.8	7.1 7.2	7.2	32.7 32.5	32.6	94.1 98.0	96.1	7.0 7.3	7.2	7.3	1.7 1.7	1.7		10.5 10.1	10.3	
W5	Sunny	Calm	08:16	Middle	4.5	20.3 20.3	20.3	7.1 7.1	7.1	33.5 33.4	33.5	96.5 100.3	98.4	7.2 7.4	7.3	1.3	1.6 1.5	1.6	1.7	4.2 4.1	4.2	6.6
				Bottom	8	20.3 20.3	20.3	7.1 7.1	7.1	33.5 33.5	33.5	93.1 91.7	92.4	6.9 6.8	6.9	6.9	1.7 1.7	1.7		5.5 5.3	5.4	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 3 October, 2014 (Mid-Flood Tide)

	Weather	Sea	Sampling	- ·		Tem	p (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-		-		-		-	-		-	-	
W1	Sunny	Calm	13:31	Middle	0.9	26.7 26.7	26.7	7.2 7.2	7.2	28.9 29.0	29.0	86.4 83.7	85.1	5.9 5.7	5.8	5.8	2.2 2.4	2.3	2.3	10.7 10.3	10.5	10.5
				Bottom		-	-		-	-	-	1 1	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	1 1	-	-	-	6.0	-	-		-	-	
W2	Sunny	Calm	13:47	Middle	1.3	26.8 26.8	26.8	7.2 7.2	7.2	28.7 28.7	28.7	86.9 87.9	87.4	5.9 6.0	6.0	0.0	1.1 1.2	1.2	1.2	13.2 12.8	13.0	13.0
				Bottom	-	-	-	-	-	-	-		-	-	-	1	-	-		-	-	
				Surface	1	26.7 26.7	26.7	7.2 7.2	7.2	28.7 29.0	28.9	88.9 88.3	88.6	6.1 6.0	6.1	6.1	1.8 1.8	1.8		9.7 9.5	9.6	
W3	Sunny	Calm	13:53	Middle		-	-	-	-	-	-	-	-	-	-	0.1	-	-	2.4	-	-	10.4
				Bottom	3	25.5 25.5	25.5	6.9 6.9	6.9	30.7 30.7	30.7	55.5 52.9	54.2	3.8 3.6	3.7	3.7	2.9 2.8	2.9		11.1 11.0	11.1	
				Surface	1	20.9 20.3	20.6	7.2 7.1	7.2	32.7 33.5	33.1	104.0 103.9	104.0	7.7 7.7	7.7	8.3	1.6 1.7	1.7		12.1 11.9	12.0	
W4	Sunny	Calm	14:10	Middle	3.5	20.9 20.5	20.7	7.2 7.1	7.2	32.6 33.1	32.9	119.4 118.3	118.9	8.8 8.8	8.8	0.5	1.6 1.6	1.6	1.7	5.4 5.3	5.4	9.4
				Bottom	6	20.4 20.2	20.3	7.1 7.1	7.1	33.3 33.6	33.5	97.3 100.6	99.0	7.2 7.5	7.4	7.4	1.8 1.7	1.8		10.8 10.6	10.7	
		_		Surface	1	20.8 20.8	20.8	7.2 7.2	7.2	32.5 32.5	32.5	104.1 106.1	105.1	7.7 7.9	7.8	8.0	1.6 1.8	1.7		13.5 13.6	13.6	
W5	Sunny	Calm	14:19	Middle	4	20.5 20.4	20.5	7.1 7.1	7.1	33.1 33.4	33.3	110.1 107.0	108.6	8.2 7.9	8.1	0.0	2.2 2.2	2.2	2.2	16.7 16.9	16.8	14.9
				Bottom	7	20.3 20.3	20.3	7.1 7.1	7.1	33.6 33.6	33.6	89.8 88.8	89.3	6.7 6.6	6.7	6.7	2.6 2.6	2.6		14.3 14.2	14.3	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 3 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	μ g /L
	Surface		-				1 1				1 1	-
W1	Middle	2.42 2.42	2.42	2.42	0.3 0.3	2.2 2.2	6.5 6.7	0.3 0.3	1.9 1.9	1.5 1.5	0.2 0.2	17.9 18.5
	Bottom	-	-		-		-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.44 2.46	2.45	2.45	0.5 0.5	2.5 2.5	5.9 6.0	0.2 0.2	1.9 1.8	1.2 1.2	<0.2 <0.2	17.8 18.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.41 2.36	2.39		0.2 0.2	1.3 1.3	7.7 7.4	<0.2 <0.2	1.2 1.1	1.4 1.4	<0.2 <0.2	14.3 14.2
W3	Middle	-	-	2.43	-	-	-	-	-	-	-	-
	Bottom	2.47 2.48	2.48		0.3 0.3	3.0 2.9	6.1 5.9	0.2 0.2	2.1 2.0	0.6 0.6	<0.2 <0.2	13.2 13.2
	Surface	0.78 0.81	0.80		0.3 0.3	1.7 1.7	7.2 6.9	<0.2 <0.2	1.8 1.7	1.6 1.6	<0.2 <0.2	22.9 22.6
W4	Middle	0.80 0.78	0.79	0.79	0.2 0.2	2.4 2.4	6.3 6.2	0.2 0.2	1.1 1.1	1.3 1.2	<0.2 <0.2	18.5 18.2
	Bottom	0.77 0.77	0.77		0.2 0.2	1.1 1.1	7.8 7.5	0.2 0.2	1.7 1.7	0.8 0.8	<0.2 <0.2	15.1 15.1
	Surface	0.79 0.79	0.79		0.1 0.1	1.9 1.9	5.3 5.5	0.2 0.2	1.1 1.1	1.4 1.5	<0.2 <0.2	20.8 21.0
W5	Middle	0.80 0.81	0.81	0.79	0.1 0.1	1.6 1.6	6.3 6.3	<0.2 <0.2	2.1 2.1	0.6 0.6	<0.2 <0.2	19.3 19.4
	Bottom	0.79 0.78	0.79		0.3 0.3	1.6 1.6	6.5 6.5	<0.2 <0.2	2.9 2.9	1.4 1.4	<0.2 <0.2	15.0 14.6

Mid-Flood Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	1.86 1.83	1.85	1.85	0.2 0.2	1.5 1.4	6.1 6.1	0.2 0.3	2.5 2.5	0.7 0.7	<0.2 <0.2	21.2 21.1
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	1.20 1.11	1.16	1.16	0.1 0.1	1.9 2.0	6.1 6.2	<0.2 <0.2	2.8 2.9	1.4 1.4	<0.2 <0.2	14.5 14.1
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	1.67 1.55	1.61		0.4 0.4	1.4 1.4	6.3 6.3	<0.2 <0.2	2.3 2.2	0.8 0.8	<0.2 <0.2	18.4 17.7
W3	Middle	-	-	1.62	-	-	-	-	-	-	-	-
	Bottom	1.70 1.56	1.63		<0.1 <0.1	2.1 2.1	6.7 7.0	0.2 0.3	1.1 1.1	0.9 0.9	0.2 0.2	13.4 13.2
	Surface	1.06 1.06	1.06		0.5 0.5	1.6 1.6	7.0 7.1	0.3 0.3	1.1 1.1	0.8 0.8	<0.2 <0.2	15.9 15.7
W4	Middle	1.07 1.06	1.07	1.06	<0.1 <0.1	2.9 3.0	6.4 6.4	<0.2 <0.2	1.6 1.6	0.9 0.9	<0.2 <0.2	17.9 18.4
	Bottom	1.06 1.06	1.06		<0.1 <0.1	2.0 2.0	5.2 5.2	<0.2 0.2	1.8 1.7	0.7 0.8	<0.2 <0.2	13.9 13.9
	Surface	1.06 1.05	1.06		0.1 0.1	2.9 2.8	7.5 7.2	0.3 0.2	2.8 2.9	1.4 1.4	0.2 0.2	19.8 20.2
W5	Middle	1.07 1.07	1.07	1.07	0.5 0.5	2.6 2.6	5.7 5.7	0.2 0.2	2.8 2.8	1.1 1.2	0.2 0.2	14.8 15.3
	Bottom	1.07 1.07	1.07		0.4 0.4	3.1 2.9	5.0 5.0	0.3 0.3	1.7 1.7	1.2 1.2	<0.2 <0.2	19.3 18.9

Appendix D - Action and Limit Levels for Marine Water Quality on 6 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 19.2</u> and <u>W2: 17.0</u>	<u>W1: 20.8</u> and <u>W2: 18.5</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 2.3</u> and <u>W2: 2.3</u>	<u>W1: 2.5</u> and <u>W2: 2.5</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 5.68</u> and <u>W2: 5.99</u>	<u>W1: 6.08</u> and <u>W2: 6.42</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.5 and W2: 3.1 or 24.0	W1: 3.8 and W2: 3.4 or 40.7
Cd	<u>W1: 0.6</u> and <u>W2: 0.5</u> or $\underline{0.8}$	<u>W1: 0.7</u> and <u>W2: 0.5</u> or <u>1.5</u>
Cu	W1: 9.5 and W2: 7.2 or 54.8	<u>W1: 10.3</u> and <u>W2: 7.8</u> or <u>95.0</u>
Zn	W1: 18.5 and W2: 20.8 or 120.0	<u>W1: 20.0</u> and <u>W2: 22.5</u> or <u>150.0</u>
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or $\underline{0.8}$
Нд	<u>W1: 0.4</u> and <u>W2: 0.2</u> or <u>5.1</u>	W1: 0.4 and W2: 0.3 or <u>8.7</u>
Ni	W1: 2.8 and W2: 3.5 or 36.8	W1: 3.0 and W2: 3.8 or <i>71.3</i>
Pb	W1: 1.4 and W2: 1.7 or 46.0	W1: 1.6 and W2: 1.8 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 6 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 15.7</u>	<u>W5: 17.0</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 3.1</u>	<u>W5: 3.4</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 2.08</u>	<u>W5: 2.17</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Ticavy metais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 2.6</u> or <u>24.0</u>	<u>W5: 2.8</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u>0.8</u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 8.4</u> or <u>54.8</u>	<u>W5: 9.1</u> or <u>95.0</u>
Zn	<u>W5: 23.0</u> or <u>120.0</u>	<u>W5: 25.0</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Hg	<u>W5: 0.4</u> or <u>5.1</u>	<u>W5: 0.4</u> or <u>8.7</u>
Ni	<u>W5: 3.1</u> or <u>36.8</u>	<u>W5: 3.3</u> or <u>71.3</u>
Pb	<u>W5: 1.5</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- $For SS \ \& \ turbidity \ non-compliance \ of \ the \ water \ quality \ limits \ occur \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 6 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1		-	-	-		-	-	-	-	-	6.3		-		-	-	
W1	Sunny	Calm	10:14	Middle	1.1	29.4 28.3	28.9	7.1 7.1	7.1	24.9 25.0	25.0	97.0 87.8	92.4	6.5 6.0	6.3	0.3	1.8 1.9	1.9	1.9	16.2 15.8	16.0	16.0
				Bottom	1	1 1	-	-	-	1 1	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-		-	-	
W2	Sunny	Calm	10:03	Middle	1.4	26.9 26.8	26.9	7.1 7.2	7.2	30.5 30.7	30.6	89.2 94.5	91.9	6.0 6.4	6.2	0.2	1.9 1.9	1.9	1.9	13.9 14.4	14.2	14.2
				Bottom		1 1	-	-	-	1 1	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	1	27.6 27.7	27.7	7.2 7.1	7.2	24.5 26.0	25.3	97.7 93.8	95.8	6.7 6.4	6.6	6.6	1.5 1.7	1.6		10.8 11.0	10.9	
W3	Sunny	Calm	09:50	Middle	1		-	-	-	-	-	-	-	-	-	0.0	-	-	1.6	-	-	10.6
				Bottom	3	26.5 26.5	26.5	7.1 7.1	7.1	31.1 31.1	31.1	82.4 78.8	80.6	5.6 5.3	5.5	5.5	1.5 1.6	1.6		10.3 10.3	10.3	
				Surface	1	27.7 27.7	27.7	7.1 7.3	7.2	29.0 29.0	29.0	77.8 80.7	79.3	5.2 5.4	5.3	5.3	1.5 1.5	1.5		9.5 9.4	9.5	
W4	Sunny	Calm	09:40	Middle	3.5	27.0 27.0	27.0	6.8 7.1	7.0	30.9 31.0	31.0	79.2 78.5	78.9	5.3 5.3	5.3	3.3	1.7 1.7	1.7	1.9	11.5 11.4	11.5	10.0
				Bottom	6	26.9 26.9	26.9	7.3 7.3	7.3	31.1 31.1	31.1	71.5 71.5	71.5	4.8 4.8	4.8	4.8	2.5 2.4	2.5		8.8 8.9	8.9	
				Surface	1	27.2 27.2	27.2	7.2 7.2	7.2	30.2 30.2	30.2	93.6 89.8	91.7	6.3 6.0	6.2	5.9	1.7 1.7	1.7		13.7 13.3	13.5	
W5	Sunny	Calm	09:32	Middle	4	26.9 26.9	26.9	7.2 7.1	7.2	30.9 30.8	30.9	81.9 83.0	82.5	5.5 5.6	5.6	5.9	1.8 1.8	1.8	1.9	7.9 8.2	8.1	11.0
Ì				Bottom	7	26.9 26.9	26.9	7.2 6.8	7.0	31.0 31.0	31.0	74.7 74.4	74.6	5.0 5.0	5.0	5.0	2.2 2.2	2.2		11.4 11.2	11.3	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 6 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-			-	-	· ·	-	-		-	-		-		
W1	Sunny	Calm	16:37	Middle	1	27.7 27.5	27.6	7.1 7.1	7.1	27.0 27.3	27.2	91.3 102.9	97.1	6.2 7.0	6.6	6.6	1.6 1.6	1.6	1.6	7.9 7.8	7.9	7.9
				Bottom	1	1 1	-	-	-	1 1	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	1 1	-		-	5.0	-	-		-	-	
W2	Sunny	Calm	16:20	Middle	1.4	26.7 27.0	26.9	7.1 7.2	7.2	30.2 30.2	30.2	73.1 74.4	73.8	4.9 5.0	5.0	0.0	1.7 1.9	1.8	1.8	6.8 6.9	6.9	6.9
				Bottom	-	1 1	-	-	-	1 1	-		-		-	-	-	-		-	-	
				Surface	1	27.2 27.3	27.3	7.1 7.2	7.2	26.9 27.1	27.0	85.7 89.3	87.5	5.9 6.1	6.0	6.0	1.6 1.6	1.6		12.5 12.0	12.3	
W3	Sunny	Calm	16:08	Middle			-	-	-		-		-			0.0	-		1.7	-	-	12.1
				Bottom	3	26.7 26.6	26.7	7.1 7.1	7.1	30.3 30.8	30.6	84.8 84.2	84.5	5.7 5.7	5.7	5.7	1.7 1.6	1.7		11.9 11.9	11.9	
				Surface	1	27.6 27.6	27.6	7.2 7.2	7.2	29.3 29.6	29.5	81.6 82.4	82.0	5.5 5.5	5.5	5.3	2.1 2.1	2.1		7.2 7.3	7.3	
W4	Sunny	Calm	15:56	Middle	3.5	27.0 27.0	27.0	6.9 7.1	7.0	31.0 31.0	31.0	75.6 76.5	76.1	5.1 5.1	5.1	3.3	3.3 3.3	3.3	2.4	6.4 6.2	6.3	5.8
				Bottom	6	26.9 26.9	26.9	7.2 7.1	7.2	31.1 31.1	31.1	74.6 71.9	73.3	5.0 4.8	4.9	4.9	1.6 1.7	1.7		3.8 3.9	3.9	
				Surface	1	27.2 27.3	27.3	7.2 7.2	7.2	30.2 30.1	30.2	87.6 86.1	86.9	5.9 5.8	5.9	5.6	2.2 2.2	2.2		8.1 8.3	8.2	
W5	Sunny	Calm	15:39	Middle	4	27.0 26.9	27.0	7.2 7.2	7.2	30.9 30.9	30.9	77.8 79.4	78.6	5.2 5.3	5.3	5.0	2.7 2.7	2.7	2.6	9.7 9.7	9.7	10.3
				Bottom	7	26.9 26.9	26.9	7.2 6.9	7.1	31.0 31.0	31.0	76.2 75.6	75.9	5.1 5.1	5.1	5.1	3.0 2.9	3.0		13.3 12.9	13.1	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 6 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L
	Surface		-				1 1			-	1 1	
W1	Middle	3.97 4.00	3.99	3.99	0.5 0.5	2.9 2.9	7.9 8.0	0.3 0.3	2.3 2.3	1.2 1.2	0.2 0.2	15.4 15.4
	Bottom	1 1	-		1 1	-	1 1	-	1 1	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	4.24 4.25	4.25	4.25	0.4 0.4	2.6 2.6	5.9 6.1	0.2 0.2	2.9 3.0	1.4 1.4	0.2 <0.2	17.7 16.9
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	4.27 4.35	4.31		0.4 0.4	2.2 2.2	5.3 5.2	<0.2 <0.2	1.8 1.8	1.2 1.2	<0.2 <0.2	9.4 9.0
W3	Middle	-	-	4.43	-		-	-	-	-	-	
	Bottom	4.55 4.53	4.54		0.5 0.5	1.3 1.4	6.6 6.5	<0.2 <0.2	2.8 2.8	0.9 0.9	<0.2 <0.2	14.4 14.3
	Surface	0.10 0.10	0.10		0.3 0.3	1.4 1.4	7.8 8.0	0.2 0.2	1.5 1.5	1.0 1.0	<0.2 <0.2	15.5 15.2
W4	Middle	0.11 0.11	0.11	0.10	0.1 0.1	2.4 2.5	6.0 6.1	<0.2 <0.2	1.7 1.6	0.9 0.8	<0.2 <0.2	8.7 8.6
	Bottom	0.09 0.09	0.09		0.4 0.3	1.5 1.4	6.3 6.3	<0.2 <0.2	2.6 2.6	1.2 1.2	<0.2 <0.2	13.4 12.8
	Surface	0.10 0.10	0.10		0.4 0.4	2.8 2.8	7.2 7.3	<0.2 <0.2	1.4 1.4	0.8 0.8	<0.2 <0.2	17.0 17.6
W5	Middle	0.14 0.13	0.14	0.11	0.1 0.1	2.7 2.8	6.5 6.3	0.2 0.2	1.7 1.8	0.8 0.8	<0.2 <0.2	12.6 12.7
	Bottom	0.10 0.10	0.10		0.4 0.4	1.8 1.7	6.3 6.3	0.2 0.2	1.7 1.7	1.4 1.5	<0.2 <0.2	12.8 12.8

Mid-Flood Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Беріп	Value	average	Average	μg/L	μg/L	μ g /L	μg/L	μ g /L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	
W1	Middle	1.85 1.87	1.86	1.86	<0.1 <0.1	2.5 2.5	6.1 6.1	0.2 0.2	2.9 2.9	1.3 1.3	<0.2 <0.2	18.3 18.3
	Bottom	1 1	-		-	-	-	-	-	1 1	-	
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	1.87 1.84	1.86	1.86	0.4 0.4	1.1 1.1	6.0 6.0	0.2 0.2	2.2 2.2	0.9 0.9	<0.2 <0.2	19.1 19.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	1.89 1.86	1.88		0.1 0.1	2.8 2.7	5.3 5.4	0.2 0.2	2.2 2.2	0.7 0.7	<0.2 <0.2	12.2 12.1
W3	Middle	-	-	1.89	-	-	-	-	-	-	-	-
	Bottom	1.91 1.89	1.90		0.4 0.4	2.3 2.3	8.0 7.6	<0.2 <0.2	3.0 3.1	1.6 1.6	<0.2 <0.2	14.7 14.4
	Surface	0.98 0.98	0.98		0.1 0.1	1.3 1.4	5.4 5.3	0.2 0.2	1.2 1.2	0.9 0.9	<0.2 <0.2	10.8 10.9
W4	Middle	0.98 0.97	0.98	0.92	0.1 0.1	2.3 2.4	7.8 7.6	0.2 0.2	1.2 1.1	1.3 1.3	<0.2 <0.2	19.9 19.9
	Bottom	0.81 0.81	0.81		<0.1 <0.1	1.1 1.1	6.0 6.1	0.2 0.2	2.4 2.4	1.2 1.2	<0.2 <0.2	15.5 15.9
	Surface	0.99 0.98	0.99		0.4 0.4	1.1 1.1	5.8 5.6	0.3 0.3	2.1 2.1	1.4 1.4	<0.2 <0.2	22.8 23.3
W5	Middle	0.98 0.97	0.98	0.98	0.3 0.3	3.0 2.8	7.9 7.8	0.3 0.3	3.1 3.0	1.5 1.5	0.2 0.2	15.4 15.4
	Bottom	0.98 0.98	0.98		0.5 0.5	2.4 2.4	7.6 7.3	0.3 0.3	2.5 2.5	0.8	<0.2 <0.2	19.2 19.1

Appendix D - Action and Limit Levels for Marine Water Quality on 8 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
GG :/I	the same tide of the same day	the same tide of the same day
SS in mg/L	<u>W1: 16.9</u> and <u>W2: 14.9</u>	<u>W1: 18.3</u> and <u>W2: 16.1</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 7.7</u> and <u>W2: 9.0</u>	W1: 8.3 and W2: 9.8
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 4.15</u> and <u>W2: 4.24</u>	<u>W1: 4.42</u> and <u>W2: 4.51</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.7 and W2: 3.0 or 24.0	W1: 4.0 and W2: 3.3 or 40.7
Cd	<u>W1: 0.5</u> and <u>W2: 0.5</u> or $\underline{0.8}$	<u>W1: 0.5</u> and <u>W2: 0.5</u> or <u>1.5</u>
Cu	W1: 7.2 and W2: 8.6 or 54.8	W1: 7.8 and W2: 9.4 or 95.0
Zn	W1: 21.8 and W2: 21.4 or 120.0	W1: 23.7 and W2: 23.1 or 150.0
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or $\underline{0.8}$
Hg	W1: 0.4 and W2: 0.4 or 5.1	<u>W1: 0.4</u> and <u>W2: 0.4</u> or <u>8.7</u>
Ni	W1: 2.9 and W2: 3.4 or 36.8	W1: 3.1 and W2: 3.6 or 71.3
Pb	W1: 1.6 and W2: 1.3 or 46.0	W1: 1.7 and W2: 1.4 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 8 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level					
DO in mg/L (Bottom)	0.01	0.01					
	120% of upstream control station's SS at	130% of upstream control station's SS at					
SS in ma/I	the same tide of the same day	the same tide of the same day					
SS in mg/L (Bottom)	<u>W5: 17.9</u>	<u>W5: 19.4</u>					
(Bottom)	or	or					
	<u>20.4</u>	<u>29.3</u>					
	120% of upstream control station's	130% of upstream control station's					
	turbidity at the same tide of the same day	turbidity at the same tide of the same day					
Turbidity in NTU	<u>W5: 5.5</u>	<u>W5: 6.0</u>					
	or	or					
	<u>21.9</u>	<u>29.7</u>					
	120% of upstream control station's	130% of upstream control station's					
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the					
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of					
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate					
mg/L (depth average)	injection	injection					
	<u>W5: 3.27</u>	<u>W5: 3.46</u>					
	or	or					
	<u>5.9</u>	<u>7.1</u>					
Heavy metals	120% of upstream control station's level	130% of upstream control station's level					
Ticavy metais	at the same tide of the same day	at the same tide of the same day					
Cr	<u>W5: 2.4</u> or <u>24.0</u>	<u>W5: 2.6</u> or <u>40.7</u>					
Cd	<u>W5: 0.4</u> or <u>0.8</u>	<u>W5: 0.5</u> or <u>1.5</u>					
Cu	<u>W5: 7.5</u> or <u>54.8</u>	<u>W5: 8.1</u> or <u>95.0</u>					
Zn	<u>W5: 20.0</u> or <u>120.0</u>	<u>W5: 21.7</u> or <u>150.0</u>					
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>					
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>					
Ni	<u>W5: 2.7</u> or <u>36.8</u>	<u>W5: 3.0</u> or <u>71.3</u>					
Pb	<u>W5: 1.0</u> or <u>46.0</u>	<u>W5: 1.1</u> or <u>82.6</u>					

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 8 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspended Solids (mg/L)													
Location	Condition	n Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*											
				Surface	-	-	-	-	-	-	-	-	-	-	-	4.7	-	-		-	-												
W1	Sunny	Calm	11:03	Middle	1	29.0 29.1	29.1	7.4 7.4	7.4	29.3 29.0	29.2	70.7 72.0	71.4	4.6 4.7	4.7	4.7	6.5 6.3	6.4	6.4	14.2 13.9	14.1	14.1											
				Bottom	-	1 1	-		-	-	-		-	-	-	-	-	-		-	-												
			11:28	11:28	Surface	,		-	-	-	-	-		-	-	-	2.1	-			-												
W2	Sunny	Calm			11:28	11:28	11:28	Middle	1.2	29.2 29.1	29.2	7.4 7.4	7.4	30.4 30.6	30.5	30.2 31.6	30.9	2.0 2.1	2.1	2	7.7 7.2	7.5	7.5	12.3 12.5	12.4	12.4							
													Bottom	-	1 1	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-			
			11:22		Surface	1	29.1 29.2	29.2	7.4 7.4	7.4	29.9 29.7	29.8	32.4 34.6	33.5	2.1 2.3	2.2	2.2	5.5 5.5	5.5		11.1 12.5	11.8											
W3	Sunny	Calm		Middle			-		-	-	-		-	-	-	2.2	-		6.7	-	-	12.1											
				Bottom	3	28.8 28.8	28.8	7.4 7.4	7.4	31.6 29.7	30.7	23.3 22.5	22.9	1.5 1.5	1.5	1.5	7.8 7.8	7.8		13.2 11.4	12.3												
				Surface	1	25.2 25.2	25.2	7.4 7.4	7.4	35.0 34.0	34.5	105.3 101.9	103.6	7.1 6.9	7.0	6.4	2.1 2.2	2.2		13.8 13.9	13.9												
W4	Sunny	Calm	11:52	11:52	11:52	11:52	11:52	11:52	11:52	11:52	11:52	11:52	11:52	11:52	Middle	3.5	28.3 28.3	28.3	7.4 7.4	7.4	30.8 33.1	32.0	87.2 87.2	87.2	5.7 5.7	5.7	0.4	3.3 3.3	3.3	4.4	9.6 9.5	9.6	11.7
																			Bottom	6	28.2 28.2	28.2	7.4 7.4	7.4	33.2 33.2	33.2	85.8 85.5	85.7	5.6 5.5	5.6	5.6	7.7 7.4	7.6
			12:07	12:07	Surface	1	25.2 25.2	25.2	7.4 7.4	7.4	33.9 33.8	33.9	99.2 98.9	99.1	6.7 6.7	6.7	6.2	2.1 1.9	2.0		12.8 12.5	12.7											
W5	Sunny	Calm			Middle	4	28.3 28.3	28.3	7.4 7.4	7.4	33.1 30.9	32.0	86.6 86.6	86.6	5.6 5.7	5.7	0.2	3.4 3.4	3.4	4.6	10.3 10.6	10.5	10.8										
				Bottom	7	28.2 28.2	28.2	7.4 7.4	7.4	33.2 33.2	33.2	87.1 86.5	86.8	5.7 5.6	5.7	5.7	8.6 8.2	8.4		9.1 9.0	9.1												

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 8 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Turbidity (NTU)			Suspended Solids (mg/												
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*										
				Surface	-		·	-	-	-	-	-	· ·	-	-		-	-		-												
W1	Fine	Calm	16:44	Middle	0.8	29.4 29.3	29.4	7.4 7.4	7.4	28.4 29.4	28.9	62.6 72.1	67.4	4.1 4.7	4.4	4.4	4.8 4.8	4.8	4.8	11.0 11.1	11.1	11.1										
				Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-											
					Surface	-	-	-	-	-	-	-	-	-	-	-	1.9	-	-		-	-										
W2	Fine	Calm	17:03	Middle	1.1	28.8 28.8	28.8	7.3 7.3	7.3	31.6 31.5	31.6	29.2 27.0	28.1	1.9 1.8	1.9	1.5	1.9 2.1	2.0	2.0	10.3 10.1	10.2	10.2										
							Bottom	-		-	-	-	-	-		-	-	-	-	-	-		-	-								
			16:57	Surface	1	28.9 29.0	29.0	7.4 7.4	7.4	31.1 30.9	31.0	23.9 24.1	24.0	1.6 1.6	1.6	1.6	5.9 6.1	6.0		11.4 11.4	11.4											
W3	Fine	Calm		Middle	-		-	-	-	-	-	-	-	-	-	1.0	-	-	5.1	-	-	10.8										
				Bottom	3	28.8 28.8	28.8	7.4 7.4	7.4	31.5 31.5	31.5	20.5 21.0	20.8	1.3 1.4	1.4	1.4	4.0 4.4	4.2		10.3 10.0	10.2											
			17:21	17:21	Surface	1	25.3 25.3	25.3	7.4 7.4	7.4	33.4 33.7	33.6	99.5 104.8	102.2	6.8 7.1	7.0	6.3	1.6 1.5	1.6		8.7 8.7	8.7										
W4	Fine	Calm			17:21	17:21	17:21	17:21	17:21	17:21	17:21	-	-	Middle	3.5	28.3 28.3	28.3	7.4 7.4	7.4	30.9 33.1	32.0	86.3 85.4	85.9	5.7 5.5	5.6	0.3	3.6 3.8	3.7	3.9	12.7 12.3	12.5	12.1
																				Bottom	6	28.2 28.2	28.2	7.4 7.4	7.4	33.3 33.3	33.3	84.7 84.7	84.7	5.5 5.5	5.5	5.5
_		-				Surface	1	25.2 25.2	25.2	7.4 7.4	7.4	33.8 33.8	33.8	103.7 101.3	102.5	7.0 6.9	7.0	6.3	2.6 2.6	2.6		10.9 10.9	10.9									
W5	Fine	Calm	17:32	Middle	4	28.3 28.3	28.3	7.4 7.4	7.4	30.8 33.2	32.0	85.5 85.2	85.4	5.6 5.5	5.6	0.3	4.5 4.5	4.5	4.6	11.1 10.9	11.0	12.3										
				Bottom	7	28.2 28.2	28.2	7.4 7.4	7.4	33.2 33.2	33.2	85.6 84.8	85.2	5.6 5.5	5.6	5.6	6.7 6.6	6.7		14.9 14.9	14.9											

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 8 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μ g/L	μg/L	μ g/L	μ g/L	μ g/L	μ g /L
	Surface		-				-					-
W1	Middle	2.66 2.75	2.71	2.71	0.4 0.4	3.1 3.1	6.0 6.0	0.3 0.3	2.4 2.4	1.3 1.3	0.2 0.2	18.0 18.4
	Bottom	1 1	-		1 1	-	-	-	1 1	1 1		-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.75 2.81	2.78	2.78	0.4 0.4	2.5 2.5	7.3 7.1	0.3 0.3	2.8 2.8	1.1 1.1	<0.2 <0.2	17.8 17.8
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.85 2.78	2.82		0.3 0.3	1.6 1.7	6.1 6.2	<0.2 <0.2	2.1 2.1	0.5 0.5	<0.2 <0.2	15.3 15.3
W3	Middle	-	-	2.83	-		-	-	-	-		-
	Bottom	2.83 2.85	2.84		0.2 0.2	2.7 2.7	5.1 5.1	<0.2 <0.2	2.2 2.2	0.7 0.7	<0.2 <0.2	9.6 9.7
	Surface	0.16 0.16	0.16		0.2 0.2	1.9 2.0	7.5 7.5	<0.2 0.2	1.2 1.2	1.2 1.2	<0.2 <0.2	12.7 12.7
W4	Middle	0.16 0.16	0.16	0.16	0.5 0.5	2.9 2.8	5.9 6.2	<0.2 <0.2	1.2 1.2	0.6 0.6	<0.2 <0.2	19.7 19.9
	Bottom	0.16 0.16	0.16		0.2 0.2	1.7 1.7	6.0 5.7	0.3 0.3	2.5 2.5	0.7 0.7	<0.2 <0.2	14.5 14.8
	Surface	0.16 0.16	0.16		0.3 0.3	1.5 1.5	7.2 7.2	<0.2 <0.2	1.4 1.3	0.9 0.9	<0.2 <0.2	12.1 12.5
W5	Middle	0.16 0.16	0.16	0.16	0.5 0.5	2.4 2.4	8.0 8.1	0.2 0.2	1.0 1.0	1.3 1.3	<0.2 <0.2	21.4 21.5
	Bottom	0.16 0.16	0.16		0.5 0.5	1.4 1.5	5.4 5.4	<0.2 <0.2	2.6 2.5	1.4 1.4	<0.2 <0.2	17.5 16.7

Mid-Flood Tide

Location	Donth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μ g /L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.68 2.60	2.64	2.64	0.1 0.1	1.0 1.1	5.0 5.0	<0.2 <0.2	2.5 2.4	0.8 0.8	<0.2 <0.2	15.5 15.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.65 2.68	2.67	2.67	0.2 0.2	2.3 2.3	6.2 6.3	<0.2 <0.2	1.2 1.1	0.8 0.8	<0.2 <0.2	15.9 15.7
	Bottom	-	-			-	1 1	-	1 1	-	1 1	-
	Surface	2.60 2.56	2.58		0.1 0.1	1.3 1.3	6.1 6.1	0.2 0.2	1.1 1.1	1.1 1.1	<0.2 <0.2	17.2 16.4
W3	Middle	-	-	2.61	-	-	-	-	-	-	-	-
	Bottom	2.63 2.65	2.64		0.4 0.4	2.5 2.5	5.8 5.6	<0.2 <0.2	2.9 2.9	0.8 0.8	<0.2 <0.2	14.7 14.6
	Surface	1.97 1.95	1.96		0.5 0.5	2.5 2.5	5.7 5.7	<0.2 <0.2	1.7 1.6	0.7 0.7	<0.2 0.2	9.3 9.5
W4	Middle	1.97 1.98	1.98	1.97	0.2 0.2	1.5 1.5	6.4 6.5	0.3 0.3	1.9 1.9	0.7 0.7	<0.2 <0.2	19.6 19.7
	Bottom	1.97 1.97	1.97		0.2 0.2	1.9 1.8	5.1 5.2	0.2 0.2	1.0 1.0	1.5 1.5	<0.2 <0.2	8.5 8.4
	Surface	1.97 1.98	1.98		0.4 0.4	2.4 2.4	6.3 6.2	0.3 0.3	2.9 2.9	0.6 0.6	<0.2 <0.2	19.3 19.9
W5	Middle	1.97 1.97	1.97	1.97	0.5 0.5	2.5 2.4	5.2 5.0	0.2 0.2	1.5 1.4	1.2 1.2	<0.2 <0.2	10.2 10.1
	Bottom	1.97 1.97	1.97		0.2 0.2	1.2 1.2	7.3 7.5	0.3 0.3	2.5 2.5	0.7 0.7	0.2 0.2	20.2 20.3

Appendix D - Action and Limit Levels for Marine Water Quality on 10 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 12.1</u> and <u>W2: 12.2</u>	<u>W1: 13.1</u> and <u>W2: 13.3</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 4.0</u> and <u>W2: 5.2</u>	<u>W1: 4.3</u> and <u>W2: 5.6</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 3.15</u> and <u>W2: 3.25</u>	<u>W1: 3.34</u> and <u>W2: 3.45</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.5 and W2: 2.9 or 24.0	W1: 3.8 and W2: 3.1 or 40.7
Cd	<u>W1: 0.5</u> and <u>W2: 0.6</u> or $\underline{0.8}$	W1: 0.5 and W2: 0.7 or <u>1.5</u>
Cu	W1: 8.5 and W2: 8.9 or 54.8	W1: 9.2 and W2: 9.6 or 95.0
Zn	W1: 23.9 and W2: 25.1 or 120.0	W1: 25.9 and W2: 27.2 or 150.0
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>
Hg	W1: 0.4 and W2: 0.4 or 5.1	W1: 0.4 and W2: 0.4 or <u>8.7</u>
Ni	<u>W1: 3.5</u> and <u>W2: 2.9</u> or <u>36.8</u>	W1: 3.8 and W2: 3.1 or 71.3
Pb	W1: 1.3 and W2: 1.7 or 46.0	W1: 1.4 and W2: 1.8 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 10 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 12.8</u>	<u>W5: 13.9</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 3.5</u>	<u>W5: 3.8</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 2.69</u>	<u>W5: 2.84</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Tieavy metais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 2.4</u> or <u>24.0</u>	<u>W5: 2.6</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u><i>0.8</i></u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 7.6</u> or <u>54.8</u>	<u>W5: 8.2</u> or <u>95.0</u>
Zn	<u>W5: 21.7</u> or <u>120.0</u>	<u>W5: 23.5</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Нд	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.4</u> or <u>8.7</u>
Ni	<u>W5: 3.2</u> or <u>36.8</u>	<u>W5: 3.4</u> or <u>71.3</u>
Pb	<u>W5: 1.4</u> or <u>46.0</u>	<u>W5: 1.5</u> or <u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 10 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	F	Н	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	1 1	-	-	-	4.7	-	-		-	-	
W1	Sunny	Calm	14:44	Middle	1.1	28.8 28.8	28.8	7.4 7.4	7.4	31.0 31.0	31.0	72.8 72.8	72.8	4.7 4.7	4.7	4.7	3.3 3.2	3.3	3.3	10.1 10.0	10.1	10.1
				Bottom	-	-	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	·	-	-	-	-		-	-	-	4.1	-	-		-	-	
W2	Sunny	Calm	14:35	Middle	1.3	28.8 28.8	28.8	7.3 7.3	7.3	31.0 31.0	31.0	62.9 62.9	62.9	4.1 4.1	4.1	4.1	4.2 4.3	4.3	4.3	10.2 10.1	10.2	10.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	29.2 29.1	29.2	7.1 7.1	7.1	27.6 27.9	27.8	127.7 127.7	127.7	8.4 8.4	8.4	8.4	3.0 2.8	2.9		11.7 11.1	11.4	
W3	Sunny	Calm	14:20	Middle		-	-	-	-	-	-		-	-		0.4	-		2.9	-	-	10.0
				Bottom	4	28.3 28.3	28.3	7.1 7.1	7.1	32.5 32.5	32.5	36.1 36.1	36.1	2.4 2.4	2.4	2.4	2.9 2.9	2.9		8.5 8.5	8.5	
				Surface	1	28.5 28.5	28.5	7.0 7.0	7.0	32.4 32.4	32.4	71.1 71.1	71.1	4.6 4.6	4.6	4.6	2.9 2.9	2.9		9.5 9.3	9.4	
W4	Sunny	Calm	14:02	Middle	3.5	28.4 28.4	28.4	7.0 7.0	7.0	32.5 32.5	32.5	70.8 70.8	70.8	4.6 4.6	4.6	4.0	3.5 3.5	3.5	3.7	6.9 6.7	6.8	7.8
				Bottom	6	28.3 28.3	28.3	7.1 7.1	7.1	32.7 32.7	32.7	69.2 69.2	69.2	4.5 4.5	4.5	4.5	4.6 4.6	4.6		7.2 7.0	7.1	
		_	-	Surface	1	28.5 28.5	28.5	6.9 6.9	6.9	32.4 32.4	32.4	87.6 87.6	87.6	5.7 5.7	5.7	5.4	2.0 2.0	2.0		5.8 5.7	5.8	
W5	Sunny	Calm	13:46	Middle	4	28.4 28.4	28.4	7.0 7.0	7.0	33.0 33.0	33.0	79.2 78.1	78.7	5.1 5.1	5.1	5.4	3.1 3.0	3.1	3.7	9.5 9.7	9.6	8.4
				Bottom	7	28.3 28.3	28.3	7.0 7.0	7.0	33.3 33.3	33.3	75.1 75.1	75.1	4.9 4.9	4.9	4.9	5.9 6.0	6.0		9.9 9.7	9.8	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 10 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	р	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-			-	-	· ·	-		4.0	-	-		-	-	
W1	Sunny	Calm	08:55	Middle	0.9	29.2 29.2	29.2	7.2 7.3	7.3	32.6 32.6	32.6	28.2 28.2	28.2	1.8 1.8	1.8	1.8	2.8 2.8	2.8	2.8	9.5 9.3	9.4	9.4
				Bottom	1	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	1 1	-	-	-	2.6	-	-		-	-	
W2	Sunny	Calm	08:44	Middle	1.4	29.2 29.2	29.2	7.3 7.2	7.3	32.3 32.4	32.4	40.1 40.1	40.1	2.6 2.6	2.6	2.0	2.9 2.9	2.9	2.9	8.5 8.2	8.4	8.4
				Bottom	-	1 1	-	-	-	1 1	-		-	-	-	-	-	-		-	-	
				Surface	1	29.4 29.3	29.4	7.2 7.2	7.2	30.1 30.9	30.5	87.1 86.8	87.0	5.6 5.6	5.6	5.6	2.1 2.1	2.1		6.8 6.8	6.8	
W3	Sunny	Calm	08:27	Middle	-		-	-	-		-	-	-	-	-	5.0	-	-	2.4	-	-	6.9
				Bottom	3	29.0 29.0	29.0	7.2 7.2	7.2	33.2 33.2	33.2	34.7 28.4	31.6	2.2 1.8	2.0	2.0	2.5 2.6	2.6		7.0 6.9	7.0	
				Surface	1	28.5 28.5	28.5	6.7 7.2	7.0	32.9 32.9	32.9	63.5 62.4	63.0	4.1 4.0	4.1	4.2	2.0 2.0	2.0		4.4 4.5	4.5	
W4	Sunny	Calm	08:07	Middle	4	28.5 28.5	28.5	6.8 7.2	7.0	33.3 33.3	33.3	65.1 65.1	65.1	4.2 4.2	4.2	4.2	2.7 2.7	2.7	2.5	6.1 6.2	6.2	7.6
				Bottom	7	28.6 28.6	28.6	7.1 7.2	7.2	33.3 33.3	33.3	68.3 69.1	68.7	4.4 4.5	4.5	4.5	2.9 2.9	2.9		12.0 12.4	12.2	
_				Surface	1	28.6 28.6	28.6	6.4 6.6	6.5	33.0 33.0	33.0	60.7 60.7	60.7	3.9 3.9	3.9	4.0	2.2 2.2	2.2		3.7 3.7	3.7	_
W5	Sunny	Calm	07:49	Middle	4	28.5 28.5	28.5	6.4 6.7	6.6	33.2 33.2	33.2	62.0 62.0	62.0	4.0 4.0	4.0	4.0	2.7 2.7	2.7	2.9	8.1 8.4	8.3	7.6
				Bottom	7	28.6 28.6	28.6	6.6 6.7	6.7	33.3 33.3	33.3	64.2 65.0	64.6	4.1 4.2	4.2	4.2	3.8 3.8	3.8		10.8 10.6	10.7	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 10 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Бериі	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L
	Surface		-				1 1				1 1	
W1	Middle	1.86 1.89	1.88	1.88	0.4 0.4	3.0 2.9	7.1 7.0	0.3 0.3	2.9 3.0	1.1 1.0	0.2 0.2	20.0 19.8
	Bottom	-	-		-		-	-	-	-	-	
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	1.95 1.97	1.96	1.96	0.5 0.5	2.4 2.4	7.3 7.5	0.3 0.3	2.4 2.4	1.4 1.4	0.2 0.2	21.4 20.4
	Bottom	-	-		-	-		-	-	-	-	-
	Surface	1.91 1.94	1.93		<0.1 <0.1	1.8 1.9	7.2 7.0	0.2 0.2	1.9 1.9	1.5 1.4	<0.2 <0.2	9.2 9.3
W3	Middle	-	-	1.94	-	-	-	-	-	-	-	-
	Bottom	1.95 1.96	1.96		0.4 0.5	1.2 1.2	6.7 6.8	0.2 0.2	1.6 1.6	0.6 0.6	0.2 0.2	17.3 18.1
	Surface	0.78 0.78	0.78		0.2 0.2	1.1 1.1	7.8 7.6	0.2 0.2	1.6 1.6	0.7 0.7	<0.2 <0.2	9.5 9.3
W4	Middle	0.77 0.75	0.76	0.78	0.3 0.3	1.2 1.2	7.5 7.6	0.2 0.2	2.6 2.5	0.6 0.6	<0.2 <0.2	10.7 10.8
	Bottom	0.78 0.79	0.79		0.1 0.1	2.8 2.7	5.3 5.3	<0.2 <0.2	2.3 2.3	1.0 0.9	<0.2 <0.2	12.4 12.3
	Surface	0.78 0.78	0.78		0.2 0.2	3.0 3.1	6.3 6.2	<0.2 <0.2	1.4 1.4	0.7 0.7	<0.2 <0.2	8.2 8.1
W5	Middle	0.79 0.77	0.78	0.74	0.2 0.2	2.5 2.5	7.7 7.8	<0.2 <0.2	1.0 1.0	0.6 0.7	0.2 <0.2	8.9 9.2
	Bottom	0.68 0.66	0.67		0.5 0.5	2.4 2.5	6.7 6.7	0.2 0.2	2.2 2.2	0.6 0.6	<0.2 <0.2	15.0 14.7

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.48 2.51	2.50	2.50	0.3 0.3	1.5 1.4	6.4 6.4	0.2 0.2	1.6 1.5	0.7 0.7	<0.2 <0.2	10.4 10.1
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.50 2.54	2.52	2.52	0.3 0.3	2.2 2.3	5.2 5.2	0.2 0.2	2.2 2.2	0.9 0.9	<0.2 <0.2	10.3 10.3
	Bottom	-	-		-	-		-	-	-	-	-
	Surface	2.53 2.50	2.52		0.2 0.2	1.6 1.6	6.2 6.0	<0.2 <0.2	1.4 1.4	1.3 1.3	<0.2 <0.2	19.4 19.6
W3	Middle	-	-	2.52	-	-		-	-	-	-	-
	Bottom	2.49 2.57	2.53		0.2 0.2	1.8 1.9	7.7 7.6	0.3 0.3	2.6 2.6	0.8 0.8	<0.2 <0.2	16.4 16.6
	Surface	1.50 1.47	1.49		0.5 0.5	1.4 1.3	7.9 7.6	0.2 0.2	2.1 2.1	0.9 0.9	0.2 0.2	12.2 11.9
W4	Middle	1.51 1.55	1.53	1.51	0.1 0.1	2.4 2.3	7.0 7.1	0.2 0.2	2.3 2.2	1.2 1.2	<0.2 <0.2	17.7 16.7
	Bottom	1.50 1.53	1.52		0.2 0.2	2.2 2.2	5.2 5.2	0.2 0.2	1.6 1.6	0.6 0.6	<0.2 <0.2	21.6 20.9
	Surface	1.52 1.54	1.53		0.5 0.5	2.9 2.9	8.0 8.3	0.3 0.2	2.9 2.9	0.6 0.6	0.2 0.2	23.2 22.2
W5	Middle	1.50 1.45	1.48	1.49	0.5 0.5	2.2	5.4 5.6	0.3	2.7 2.8	1.4 1.4	0.2 0.2	21.9 21.9
	Bottom	1.49 1.46	1.48		0.2 0.2	1.0	5.2 5.3	0.3 0.3	2.3	1.4 1.4	<0.2 <0.2	9.5 9.8

Appendix D - Action and Limit Levels for Marine Water Quality on 13 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 22.2</u> and <u>W2: 21.2</u>	<u>W1: 24.1</u> and <u>W2: 23.0</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 9.2</u> and <u>W2: 7.1</u>	<u>W1: 10.0</u> and <u>W2: 7.7</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 6.42</u> and <u>W2: 6.73</u>	<u>W1: 6.88</u> and <u>W2: 7.22</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.0 and W2: 3.6 or 24.0	W1: 3.3 and W2: 3.9 or 40.7
Cd	<u>W1: 0.5</u> and <u>W2: 0.5</u> or $\underline{0.8}$	W1: 0.5 and W2: 0.6 or <u>1.5</u>
Cu	W1: 8.0 and W2: 7.3 or 54.8	W1: 8.6 and W2: 7.9 or 95.0
Zn	W1: 19.1 and W2: 14.8 or 120.0	W1: 20.7 and W2: 16.1 or 150.0
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or $\underline{0.8}$
Hg	W1: 0.4 and W2: 0.4 or <u>5.1</u>	<u>W1: 0.4</u> and <u>W2: 0.4</u> or <u>8.7</u>
Ni	W1: 2.9 and W2: 2.4 or 36.8	W1: 3.2 and W2: 2.6 or 71.3
Pb	W1: 1.9 and W2: 1.4 or 46.0	W1: 2.0 and W2: 1.6 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 13 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 21.1</u>	<u>W5: 22.9</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 8.0</u>	<u>W5: 8.7</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 2.14</u>	<u>W5: 2.25</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Treavy metals	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 2.9</u> or <u>24.0</u>	<u>W5: 3.2</u> or <u>40.7</u>
Cd	<u>W5: 0.4</u> or <u><i>0.8</i></u>	<u>W5: 0.4</u> or <u>1.5</u>
Cu	<u>W5: 7.6</u> or <u>54.8</u>	<u>W5: 8.2</u> or <u>95.0</u>
Zn	<u>W5: 19.0</u> or <u>120.0</u>	<u>W5: 20.6</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Нд	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 3.5</u> or <u>36.8</u>	<u>W5: 3.8</u> or <u>71.3</u>
Pb	<u>W5: 1.5</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 13 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	F	Н	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	1 1	-	-	-	6.6	-	-		-	-	
W1	Sunny	Calm	15:44	Middle	1.1	29.0 29.0	29.0	7.6 8.7	8.2	29.1 29.3	29.2	93.3 107.0	100.2	6.1 7.0	6.6	0.0	7.8 7.5	7.7	7.7	18.9 18.0	18.5	18.5
				Bottom	1	-	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	- 1	-		-	-	1 1	-		-	-	-	7.1	-	-		-	-	
W2	Sunny	Calm	16:04	Middle	1.3	28.9 28.9	28.9	8.1 8.0	8.1	30.2 30.9	30.6	109.5 109.9	109.7	7.1 7.1	7.1	7.1	5.9 5.8	5.9	5.9	17.5 17.8	17.7	17.7
				Bottom		-	-	-	-		-		-	-	-	-	-			-	-	
				Surface	1	29.1 28.9	29.0	7.7 7.8	7.8	29.3 30.8	30.1	113.6 116.1	114.9	7.4 7.5	7.5	7.5	5.9 5.6	5.8		11.6 18.0 14.8		
W3	Sunny	Calm	16:16	Middle	1	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.2	-	-	15.5
				Bottom	3	28.7 28.6	28.7	8.1 8.0	8.1	31.5 31.8	31.7	113.5 115.5	114.5	7.4 7.5	7.5	7.5	6.8 6.2	6.5		16.7 15.7	16.2	
				Surface	1	29.2 29.4	29.3	9.1 7.8	8.5	28.9 27.2	28.1	110.7 115.6	113.2	7.2 7.6	7.4	7.4	6.9 6.8	6.9		12.8 12.5	12.7	
W4	Sunny	Calm	16:39	Middle	3.5	28.7 28.8	28.8	8.8 8.3	8.6	31.6 31.0	31.3	109.7 116.8	113.3	7.1 7.6	7.4	7.4	6.4 6.5	6.5	7.0	15.2 15.4	15.3	12.0
				Bottom	6	28.5 28.5	28.5	8.5 7.6	8.1	32.0 32.1	32.1	113.9 114.6	114.3	7.4 7.5	7.5	7.5	7.4 7.7	7.6		8.2 8.0	8.1	
		_		Surface	1	29.0 23.9	26.5	8.5 8.0	8.3	30.4 30.3	30.4	105.7 94.2	100.0	6.9 6.7	6.8	6.6	4.8 4.2	4.5		12.6 11.8	12.2	
W5	Sunny	Calm	16:52	Middle	4	28.5 23.5	26.0	8.0 8.7	8.4	32.0 36.0	34.0	106.0 85.4	95.7	6.9 5.9	6.4	0.0	4.2 4.5	4.4	5.0	14.4 14.3	14.4	13.7
				Bottom	7	28.5 23.6	26.1	8.9 8.3	8.6	32.1 36.0	34.1	100.5 86.1	93.3	6.5 5.9	6.2	6.2	5.8 6.2	6.0		15.0 14.2	14.6	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 13 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		·	-			-	-	· ·	-	-		-	-		-	-	
W1	Sunny	Calm	10:37	Middle	0.8	29.0 29.0	29.0	8.0 8.5	8.3	30.0 30.2	30.1	126.8 132.5	129.7	8.3 8.6	8.5	8.5	6.0 5.4	5.7	5.7	12.5 12.5	12.5	12.5
				Bottom	-		-	-	-	1 1	-		-	-	-	-	-	-		-	-	ı.
				Surface	- 1	1 1	-	-	-	1 1	-	1 1	-	-	-	8.0	-	-		-	-	
W2	Sunny	Calm	10:46	Middle	1.3	29.1 29.0	29.1	8.8 8.4	8.6	29.4 29.7	29.6	119.6 125.6	122.6	7.8 8.2	8.0	0.0	4.5 4.6	4.6	4.6	14.3 14.5	14.4	14.4
				Bottom	-		-	-	-	1 1	-		-	-	-	-	-	-		-	-	i
				Surface	1	29.0 28.9	29.0	8.8 8.3	8.6	29.3 30.6	30.0	103.8 121.8	112.8	6.8 7.9	7.4	7.4	5.2 5.2	5.2		16.8 16.7	16.8	
W3	Sunny	Calm	10:54	Middle	,		-	-	-		-		-	-	-	7.4	-		4.9	-	-	14.6
				Bottom	3	28.7 28.8	28.8	7.9 8.9	8.4	31.1 30.8	31.0	106.7 127.3	117.0	7.0 8.3	7.7	7.7	4.6 4.5	4.6		12.2 12.5	12.4	i
				Surface	1	28.7 28.8	28.8	8.0 8.6	8.3	27.9 29.9	28.9	102.9 105.1	104.0	6.8 6.9	6.9	6.9	6.8 5.8	6.3		12.1 12.1	12.1	
W4	Sunny	Calm	11:14	Middle	3.5	28.7 28.7	28.7	8.3 8.0	8.2	31.2 31.2	31.2	104.2 104.2	104.2	6.8 6.8	6.8	0.5	6.6 6.8	6.7	6.2	19.0 19.0	19.0	13.6
				Bottom	6	28.6 28.6	28.6	7.9 8.1	8.0	31.3 31.4	31.4	102.7 100.6	101.7	6.7 6.6	6.7	6.7	6.2 5.0	5.6		9.8 9.7	9.8	i
				Surface	1	28.9 28.7	28.8	8.5 7.7	8.1	29.6 31.1	30.4	84.9 99.3	92.1	5.6 6.5	6.1	6.5	6.2 5.9	6.1		10.0 10.2	10.1	
W5	Sunny	Calm	11:27	Middle	4	28.7 28.7	28.7	8.3 9.0	8.7	31.0 31.3	31.2	105.0 106.0	105.5	6.8 6.9	6.9	0.0	7.2 8.0	7.6	6.7	12.1 12.1	12.1	13.3
				Bottom	7	28.6 28.6	28.6	8.4 9.0	8.7	31.5 31.5	31.5	100.2 107.2	103.7	6.5 7.0	6.8	6.8	6.4 6.5	6.5		17.7 17.5	17.6	ı

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 13 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L
	Surface	-	-		-		-		-	-	-	
W1	Middle	4.62 4.58	4.60	4.60	0.4 0.4	2.5 2.5	6.6 6.7	0.3 0.3	2.4 2.5	1.6 1.5	0.2 0.2	16.3 15.5
	Bottom	-	-		-		-	-	-	-	-	
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	4.81 4.91	4.86	4.86	0.5 0.4	3.0 3.0	6.1 6.0	0.3 0.3	2.0 2.0	1.2 1.2	<0.2 <0.2	12.4 12.3
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	4.76 4.70	4.73		0.3 0.3	1.0 1.0	6.5 6.5	0.2 0.2	1.4 1.5	0.6 0.6	<0.2 <0.2	9.5 9.8
W3	Middle	-	-	4.81	-		-	-	-	-	-	
	Bottom	4.91 4.85	4.88		0.3 0.3	1.2 1.2	7.2 7.4	<0.2 <0.2	2.7 2.7	0.6 0.6	<0.2 <0.2	17.5 18.0
	Surface	4.75 4.87	4.81		0.3 0.3	1.9 1.8	6.6 6.6	<0.2 <0.2	2.8 2.6	1.1 1.1	<0.2 <0.2	21.0 20.1
W4	Middle	4.80 4.59	4.70	4.79	0.3 0.4	1.3 1.3	7.1 7.1	0.2 0.2	1.4 1.4	1.5 1.5	<0.2 <0.2	9.1 9.4
	Bottom	4.90 4.84	4.87		<0.1 <0.1	2.3 2.2	5.6 5.5	0.2 0.2	1.6 1.6	1.0 1.0	<0.2 <0.2	13.7 14.0
	Surface	5.05 5.07	5.06		0.3 0.3	1.3 1.2	5.6 5.8	0.2 0.2	1.3 1.3	0.9 0.9	<0.2 <0.2	12.7 12.7
W5	Middle	4.81 4.71	4.76	5.25	<0.1 <0.1	1.6 1.6	7.4 7.4	0.2 0.2	1.7 1.7	1.3 1.3	<0.2 <0.2	10.7 10.7
	Bottom	5.80 6.03	5.92		0.4 0.4	2.1 2.1	7.9 7.9	0.3 0.3	3.1 3.0	0.9 0.9	<0.2 <0.2	16.8 16.5

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-		-	-	-	-	-	-
W1	Middle	1.08 1.07	1.08	1.08	0.2 0.2	1.2 1.2	7.1 7.1	<0.2 <0.2	1.7 1.8	0.8 0.8	<0.2 <0.2	12.4 12.5
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	1.08 1.07	1.08	1.08	0.1 0.1	1.3 1.2	5.4 5.3	0.2 0.2	2.8 2.7	1.2 1.1	<0.2 <0.2	8.4 8.1
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	1.08 1.09	1.09		<0.1 <0.1	1.7 1.7	8.2 8.2	<0.2 <0.2	1.5 1.4	0.8 0.8	<0.2 <0.2	15.5 15.3
W3	Middle	-	-	0.98	-	-	-	-	-	-	-	-
	Bottom	0.87 0.88	0.88		0.2 0.2	1.1 1.0	6.0 6.1	0.3 0.3	1.7 1.7	1.1 1.0	0.2 0.2	21.3 20.9
	Surface	1.08 1.07	1.08		0.3 0.3	1.0 1.0	6.6 6.3	<0.2 <0.2	1.2 1.3	1.1 1.1	0.2 0.2	13.1 12.9
W4	Middle	1.09 1.07	1.08	1.06	0.4 0.4	1.5 1.4	6.9 7.0	<0.2 <0.2	1.6 1.6	1.1 1.1	<0.2 <0.2	19.7 19.3
	Bottom	1.05 0.99	1.02		0.2 0.2	3.0 3.0	5.5 5.7	0.2 0.3	3.0 2.9	0.9 0.9	<0.2 <0.2	10.4 10.4
	Surface	1.05 1.01	1.03		0.2 0.2	2.9 2.9	6.3 6.3	0.3 0.3	3.1 3.1	1.2 1.2	<0.2 <0.2	15.8 15.7
W5	Middle	1.04 1.04	1.04	1.04	0.2 0.2	2.6 2.6	5.6 5.4	0.3 0.3	2.7 2.8	1.2 1.2	0.2 0.2	13.9 14.0
	Bottom	1.04 1.04	1.04		0.5 0.5	1.8 1.8	7.2 7.1	0.2 0.2	2.9 2.9	1.4 1.4	0.2 0.2	17.7 17.8

Appendix D - Action and Limit Levels for Marine Water Quality on 16 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
SS in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 15.2</u> and <u>W2: 17.2</u>	<u>W1: 16.5</u> and <u>W2: 18.6</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 5.3</u> and <u>W2: 5.8</u>	<u>W1: 5.7</u> and <u>W2: 6.2</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 4.34</u> and <u>W2: 4.38</u>	<u>W1: 4.62</u> and <u>W2: 4.67</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.6 and W2: 3.2 or 24.0	<u>W1: 3.9</u> and <u>W2: 3.5</u> or <u>40.7</u>
Cd	<u>W1: 0.4</u> and <u>W2: 0.5</u> or <u>0.8</u>	<u>W1: 0.4</u> and <u>W2: 0.5</u> or <u>1.5</u>
Cu	W1: 7.4 and W2: 7.6 or 54.8	<u>W1: 8.0</u> and <u>W2: 8.3</u> or <u>95.0</u>
Zn	W1: 26.0 and W2: 19.4 or 120.0	W1: 28.2 and W2: 21.0 or 150.0
Ag	<u>W1: 0.2</u> and <u>W2: 0.2</u> or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>
Нg	W1: 0.4 and W2: 0.4 or 5.1	<u>W1: 0.4</u> and <u>W2: 0.4</u> or <u>8.7</u>
Ni	W1: 2.9 and W2: 2.7 or 36.8	W1: 3.1 and W2: 2.9 or 71.3
Pb	<u>W1: 1.3</u> and <u>W2: 1.3</u> or <u>46.0</u>	W1: 1.4 and W2: 1.4 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 16 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 15.7</u>	<u>W5: 17.0</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 4.7</u>	<u>W5: 5.1</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 4.03</u>	<u>W5: 4.29</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Ticavy inctais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.1</u> or <u>24.0</u>	<u>W5: 3.3</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u><i>0.8</i></u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 7.9</u> or <u>54.8</u>	<u>W5: 8.6</u> or <u>95.0</u>
Zn	<u>W5: 19.6</u> or <u>120.0</u>	<u>W5: 21.2</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Нд	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.6</u> or <u>36.8</u>	<u>W5: 2.8</u> or <u>71.3</u>
Pb	<u>W5: 1.5</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- $For SS \ \& \ turbidity \ non-compliance \ of \ the \ water \ quality \ limits \ occur \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 16 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	2.5	-	-		-	-	
W1	Sunny	Calm	07:24	Middle	1.2	28.0 28.0	28.0	7.2 7.1	7.2	31.4 31.4	31.4	37.6 38.6	38.1	2.5 2.5	2.5	2.5	4.3 4.4	4.4	4.4	12.8 12.6	12.7	12.7
				Bottom	1	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	3.0	-	-		-	-	
W2	Sunny	Calm	07:15	Middle	1.3	28.2 28.2	28.2	7.0 7.0	7.0	31.2 31.2	31.2	47.7 43.8	45.8	3.1 2.9	3.0	3.0	4.7 4.8	4.8	4.8	14.1 14.4	14.3	14.3
				Bottom		1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	1	28.3 28.2	28.3	6.9 6.9	6.9	29.1 29.8	29.5	58.3 58.5	58.4	3.9 3.9	3.9	3.9	3.6 3.7	3.7		7.9 8.1	. 80	
W3	Sunny	Calm	07:01	Middle	1		-	-	-	-	-	-	-	-	-	3.9	-	-	3.5	-	-	8.3
				Bottom	3	27.9 27.9	27.9	6.8 6.8	6.8	32.0 32.0	32.0	34.1 30.5	32.3	2.2 2.0	2.1	2.1	3.4 2.9	3.2		8.6 8.3	8.5	
				Surface	1	27.5 27.5	27.5	6.9 7.1	7.0	31.7 31.8	31.8	83.3 82.4	82.9	5.5 5.5	5.5	5.5	2.6 2.5	2.6		9.4 9.1	9.3	
W4	Sunny	Calm	06:44	Middle	3.5	27.4 27.5	27.5	6.9 7.1	7.0	32.1 32.1	32.1	84.1 82.3	83.2	5.6 5.4	5.5	3.3	2.6 2.6	2.6	2.6	9.0 9.4	9.2	9.2
				Bottom	6	27.4 27.4	27.4	7.1 7.1	7.1	32.2 32.2	32.2	85.0 86.1	85.6	5.6 5.7	5.7	5.7	2.6 2.7	2.7		8.9 9.1	9.0	
			-	Surface	1	27.5 27.5	27.5	6.7 6.7	6.7	31.8 31.8	31.8	81.7 80.8	81.3	5.4 5.3	5.4	5.4	2.4 2.3	2.4		8.7 9.0	8.9	_
W5	Sunny	Calm	06:30	Middle	4	27.4 27.5	27.5	6.7 6.8	6.8	32.1 32.1	32.1	82.3 82.0	82.2	5.4 5.4	5.4	3.4	2.6 2.6	2.6	2.7	10.3 10.0	10.2	9.1
				Bottom	7	27.4 27.4	27.4	6.7 6.8	6.8	32.2 32.2	32.2	83.0 84.7	83.9	5.5 5.6	5.6	5.6	3.2 3.0	3.1		8.3 8.1	8.2	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 16 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-	-	-	-	· ·	-	-		-	-		-		
W1	Fine	Calm	18:43	Middle	1	27.7 27.7	27.7	7.1 7.1	7.1	29.9 29.9	29.9	47.6 48.7	48.2	3.2 3.2	3.2	3.2	4.1 4.2	4.2	4.2	7.1 6.9	7.0	7.0
				Bottom	1	1 1	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	-	-	3.8	-	-		-	-	
W2	Fine	Calm	18:31	Middle	1.4	27.8 27.8	27.8	7.0 7.0	7.0	29.9 29.9	29.9	59.1 55.2	57.2	3.9 3.7	3.8	0.0	4.4 4.6	4.5	4.5	8.4 8.3	8.4	8.4
				Bottom	-	1 1	-	-	-	-	-		-	-	-	-	-	-		-	-	
				Surface	1	28.1 28.1	28.1	6.8 6.8	6.8	26.7 26.9	26.8	78.5 78.9	78.7	5.3 5.3	5.3	5.3	4.1 4.1	4.1	10.9 11.1	11.0		
W3	Fine	Calm	18:12	Middle	-		-	-	-	-	-	-	-	-	-	5.5	-	-	3.8	-	-	11.7
				Bottom	3	27.2 27.2	27.2	6.7 6.7	6.7	31.3 31.3	31.3	34.8 34.5	34.7	2.3 2.3	2.3	2.3	3.2 3.6	3.4		12.2 12.3	12.3	
				Surface	1	27.5 27.4	27.5	7.0 6.9	7.0	31.2 31.2	31.2	87.1 86.7	86.9	5.8 5.8	5.8	5.8	3.6 3.4	3.5		12.3 12.1	12.2	
W4	Fine	Calm	17:49	Middle	3.5	27.4 27.4	27.4	7.0 6.9	7.0	31.4 31.4	31.4	86.9 85.1	86.0	5.8 5.7	5.8	3.0	3.0 3.0	3.0	3.3	6.6 6.4	6.5	9.3
				Bottom	6	27.3 27.3	27.3	6.9 6.9	6.9	31.6 31.6	31.6	85.5 86.1	85.8	5.7 5.7	5.7	5.7	3.4 3.5	3.5		9.3 8.9	9.1	
			-	Surface	1	27.4 27.4	27.4	6.8 6.8	6.8	31.3 31.3	31.3	95.1 94.3	94.7	6.3 6.3	6.3	6.2	3.6 3.7	3.7		8.0 8.2	8.1	
W5	Fine	Calm	17:29	Middle	4	27.4 27.4	27.4	6.8 6.8	6.8	31.9 31.9	31.9	90.8 90.1	90.5	6.0 6.0	6.0	0.2	3.8 3.7	3.8	3.9	9.9 10.3	10.1	10.4
				Bottom	7	27.2 27.2	27.2	6.8 6.8	6.8	32.1 32.1	32.1	88.4 89.7	89.1	5.9 6.0	6.0	6.0	4.3 4.3	4.3		13.1 13.1	13.1	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 16 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Бериі	Value	average	Average	μg/L	μ g/L	μ g/L	μg/L	μ g/L	μ g/L	μg/L	μ g /L
	Surface		-				-				1 1	-
W1	Middle	2.92 2.81	2.87	2.87	0.3 0.3	3.0 3.0	6.1 6.2	0.3 0.3	2.4 2.4	1.1 1.0	0.2 0.2	21.4 22.0
	Bottom	1 1	-		1 1	-	-	-	1 1	1 1	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.94 2.86	2.90	2.90	0.4 0.4	2.7 2.7	6.2 6.5	0.3 0.3	2.2 2.3	1.1 1.1	<0.2 <0.2	16.4 15.9
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.87 2.79	2.83		<0.1 <0.1	3.0 2.9	6.5 6.7	<0.2 <0.2	1.3 1.3	0.6 0.6	<0.2 <0.2	17.1 17.1
W3	Middle	-	-	2.97	-		-	-	-	-	-	-
	Bottom	3.06 3.16	3.11		0.2 0.2	2.5 2.6	6.7 6.9	<0.2 <0.2	2.9 2.9	0.8 0.8	<0.2 <0.2	18.9 19.0
	Surface	2.99 3.10	3.05		<0.1 <0.1	2.6 2.7	6.9 7.0	0.2 0.2	3.1 3.0	0.8 0.8	<0.2 <0.2	9.9 10.0
W4	Middle	3.00 2.95	2.98	2.98	0.1 0.1	2.0 2.0	7.1 7.1	0.3 0.2	1.3 1.3	1.3 1.3	<0.2 <0.2	13.3 13.7
	Bottom	2.99 2.86	2.93		0.1 0.1	2.3 2.3	7.4 7.3	<0.2 <0.2	1.5 1.5	0.8 0.7	<0.2 <0.2	22.3 22.4
	Surface	3.01 3.01	3.01		0.2 0.2	1.6 1.6	6.7 6.7	0.2 0.2	1.4 1.3	1.0 1.0	<0.2 <0.2	13.4 13.6
W5	Middle	2.94 2.90	2.92	2.95	0.1 0.1	1.9 2.0	6.2 6.2	0.3 0.3	3.1 3.0	0.5 0.5	<0.2 <0.2	19.8 19.8
	Bottom	2.94 2.92	2.93		<0.1 <0.1	2.4 2.5	7.1 6.9	<0.2 <0.2	1.8 1.8	1.0 1.0	<0.2 <0.2	15.1 15.4

Location	Donth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μ g/L	μ g/L	μg/L	μg/L	μg/L	μ g/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.74 2.79	2.77	2.77	0.2 0.2	1.9 1.9	6.7 6.7	0.2 0.2	1.2 1.2	1.0 1.0	<0.2 <0.2	11.0 11.1
	Bottom	-	-			-	-	-	1 1	-	1 1	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.41 2.38	2.40	2.40	0.4 0.4	1.4 1.4	5.2 5.2	<0.2 <0.2	1.2 1.2	0.7 0.6	0.2 0.2	8.9 8.6
	Bottom	-	-			-	-	-	1 1	-	1 1	-
	Surface	2.34 2.36	2.35		0.4 0.4	1.9 1.9	7.0 7.0	<0.2 <0.2	1.4 1.4	1.5 1.5	<0.2 <0.2	21.1 21.0
W3	Middle	-	-	2.33	-	-	-	-	-	-	-	-
	Bottom	2.36 2.26	2.31		0.3 0.3	1.2 1.2	5.4 5.4	<0.2 <0.2	2.9 2.8	1.1 1.1	<0.2 <0.2	16.3 16.0
	Surface	2.66 2.65	2.66		0.2 0.2	1.2 1.2	8.1 8.2	0.3 0.3	1.6 1.6	0.6 0.6	<0.2 <0.2	9.9 9.9
W4	Middle	2.81 2.75	2.78	2.73	0.4 0.4	2.5 2.6	6.9 7.1	<0.2 <0.2	1.1 1.1	0.6 0.5	<0.2 <0.2	20.2 20.7
	Bottom	2.73 2.80	2.77		0.3 0.3	2.9 2.9	5.3 5.2	<0.2 <0.2	2.8 2.9	0.9 0.9	<0.2 <0.2	11.4 11.0
	Surface	2.49 2.47	2.48		0.4 0.4	2.5 2.4	7.1 7.2	0.3 0.3	2.9 2.9	1.0 1.0	0.2 0.2	14.2 14.0
W5	Middle	2.86 2.98	2.92	2.61	0.5 0.5	2.2 2.2	7.5 7.6	0.2 0.2	2.5 2.5	1.3 1.3	0.2 0.2	18.3 18.3
	Bottom	2.42 2.41	2.42		0.3 0.3	3.1 3.0	5.1 5.0	0.3 0.2	1.2 1.1	1.5 1.5	0.2 0.2	16.6 16.5

Appendix D - Action and Limit Levels for Marine Water Quality on 18 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 10.6</u> and <u>W2: 10.9</u>	<u>W1: 11.4</u> and <u>W2: 11.8</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 9.7</u> and <u>W2: 8.5</u>	W1: 10.5 and W2: 9.2
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 7.22</u> and <u>W2: 7.35</u>	<u>W1: 7.75</u> and <u>W2: 7.89</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 2.4 and W2: 2.6 or 24.0	W1: 2.6 and W2: 2.9 or 40.7
Cd	<u>W1: 0.6</u> and <u>W2: 0.6</u> or $\underline{0.8}$	<u>W1: 0.7</u> and <u>W2: 0.7</u> or <u>1.5</u>
Cu	W1: 8.8 and W2: 9.1 or 54.8	W1: 9.5 and W2: 9.8 or 95.0
Zn	W1: 26.5 and W2: 24.3 or 120.0	<u>W1: 28.7</u> and <u>W2: 26.3</u> or <u>150.0</u>
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>
Нд	<u>W1: 0.2</u> and <u>W2: 0.4</u> or <u>5.1</u>	<u>W1: 0.3</u> and <u>W2: 0.4</u> or <u>8.7</u>
Ni	W1: 2.7 and W2: 2.6 or 36.8	W1: 2.9 and W2: 2.9 or 71.3
Pb	W1: 1.8 and W2: 1.9 or 46.0	W1: 2.0 and W2: 2.1 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 18 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 8.9</u>	<u>W5: 9.6</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 8.6</u>	<u>W5: 9.4</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 7.15</u>	<u>W5: 7.67</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Haaviy matala	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.0</u> or <u>24.0</u>	<u>W5: 3.3</u> or <u>40.7</u>
Cd	<u>W5: 0.4</u> or <u>0.8</u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 7.7</u> or <u>54.8</u>	<u>W5: 8.3</u> or <u>95.0</u>
Zn	<u>W5: 22.6</u> or <u>120.0</u>	<u>W5: 24.5</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.9</u> or <u>36.8</u>	<u>W5: 3.1</u> or <u>71.3</u>
Pb	<u>W5: 1.3</u> or <u>46.0</u>	<u>W5: 1.4</u> or <u>82.6</u>

- $For SS \ \& \ turbidity \ non-compliance \ of \ the \ water \ quality \ limits \ occur \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 18 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	-	-	-	-	2.7		-		-	-	
W1	Sunny	Calm	07:59	Middle	0.8	28.4 28.4	28.4	7.8 7.8	7.8	29.7 29.5	29.6	41.3 41.5	41.4	2.7 2.7	2.7	2.7	7.9 8.2	8.1	8.1	8.7 8.8	8.8	8.8
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	1.6	-	-		-	-	
W2	Sunny	Calm	08:19	Middle	1.1	28.0 28.0	28.0	7.8 7.8	7.8	32.9 32.9	32.9	24.1 23.6	23.9	1.6 1.5	1.6	1.0	7.1 7.0	7.1	7.1	8.9 9.2	9.1	9.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	28.4 28.3	28.4	7.8 7.8	7.8	29.1 28.5	28.8	54.8 50.4	52.6	3.6 3.4	3.5	3.5	2.7 2.7	2.7		5.3 5.2	5.3	
W3	Sunny	Calm	08:10	Middle	,		-		-		-		-	-	-	0.0	-		3.5	-	-	5.2
				Bottom	3	27.7 27.8	27.8	7.8 7.8	7.8	32.8 32.7	32.8	34.2 34.0	34.1	2.2 2.2	2.2	2.2	4.1 4.2	4.2		5.0 5.1	5.1	
				Surface	1	28.0 28.0	28.0	7.8 7.8	7.8	27.4 28.4	27.9	109.2 111.5	110.4	7.3 7.5	7.4	5.8	5.3 5.3	5.3		6.1 6.0	6.1	
W4	Sunny	Calm	08:35	Middle	3.5	27.7 27.7	27.7	7.8 7.8	7.8	32.4 32.4	32.4	63.3 63.8	63.6	4.2 4.2	4.2	5.0	5.2 5.1	5.2	4.9	7.1 6.9	7.0	6.8
				Bottom	6	27.5 27.5	27.5	7.8 7.8	7.8	32.7 32.7	32.7	72.6 73.1	72.9	4.8 4.8	4.8	4.8	4.2 4.0	4.1		7.1 7.3	7.2	
_		_		Surface	1	28.2 28.1	28.2	7.8 7.8	7.8	29.0 29.3	29.2	115.4 115.2	115.3	7.7 7.7	7.7	5.9	2.7 2.8	2.8		4.6 4.6	4.6	
W5	Sunny	Calm	08:47	Middle	4	27.7 27.7	27.7	7.8 7.8	7.8	32.4 32.4	32.4	61.7 62.3	62.0	4.1 4.1	4.1	5.9	5.0 5.0	5.0	3.5	4.3 4.4	4.4	4.7
				Bottom	7	27.5 27.5	27.5	7.8 7.8	7.8	32.7 32.7	32.7	70.6 71.2	70.9	4.7 4.7	4.7	4.7	2.6 2.6	2.6		5.2 5.2	5.2	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 18 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	F	H	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		·	-		-	-	-	-	-			-	-		-		
W1	Sunny	Calm	15:04	Middle	1	28.4 28.4	28.4	7.8 7.8	7.8	28.9 29.1	29.0	40.9 41.0	41.0	2.7 2.7	2.7	2.7	6.8 6.8	6.8	6.8	2.6 2.6	2.6	2.6
				Bottom	1	1 1	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	-	-	2.1	-	-		-	-	
W2	Sunny	Calm	15:25	Middle	1.3	27.9 28.0	28.0	7.8 7.8	7.8	32.9 32.8	32.9	34.6 28.1	31.4	2.3 1.8	2.1	2.1	7.0 7.5	7.3	7.3	2.4 2.4	2.4	2.4
				Bottom	-	1 1	-	-	-	-	-		-	-	-	-	-	-		-	-	
				Surface	1	28.3 28.5	28.4	7.8 7.8	7.8	31.5 31.5	31.5	39.9 39.1	39.5	2.6 2.6	2.6	2.6	6.0 6.4	6.2		6.5 6.7	6.6	
W3	Sunny	Calm	15:18	Middle	-		-	-	-	-	-	-	-	-	-	2.0	-	-	7.2	-	-	5.9
				Bottom	3	27.7 27.7	27.7	7.8 7.8	7.8	33.0 32.9	33.0	31.0 26.3	28.7	2.0 1.7	1.9	1.9	8.0 8.1	8.1		5.3 5.1	5.2	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	31.5 31.4	31.5	96.4 91.5	94.0	6.3 6.0	6.2	5.2	5.3 5.2	5.3		5.1 5.2	5.2	
W4	Sunny	Calm	15:40	Middle	3.5	27.7 27.7	27.7	7.8 7.8	7.8	32.5 32.5	32.5	61.8 61.0	61.4	4.1 4.0	4.1	5.2	8.2 8.3	8.3	6.3	2.6 2.6	2.6	4.1
				Bottom	6	27.5 27.5	27.5	7.8 7.8	7.8	32.7 32.7	32.7	73.2 73.1	73.2	4.8 4.8	4.8	4.8	5.1 5.2	5.2		4.5 4.6	4.6	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	31.5 31.6	31.6	85.3 83.2	84.3	5.6 5.5	5.6	4.8	6.8 6.8	6.8		4.2 4.3	4.3	
W5	Sunny	Calm	15:49	Middle	4	27.7 27.7	27.7	7.8 7.8	7.8	32.5 32.4	32.5	61.0 60.4	60.7	4.0 4.0	4.0	4.0	8.6 8.5	8.6	7.2	3.6 3.7	3.7	5.1
				Bottom	7	27.5 27.5	27.5	7.8 7.8	7.8	32.7 32.7	32.7	63.3 65.0	64.2	4.2 4.3	4.3	4.3	6.1 6.2	6.2		7.4 7.4	2.6 - 2.4 - 6.6 - 5.2 5.2 2.6 4.3	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 18 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	
W1	Middle	5.28 5.26	5.27	5.27	0.5 0.5	2.0 2.0	7.4 7.2	0.2 0.2	2.3 2.2	1.5 1.5	0.2 0.2	22.2 22.0
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	5.40 5.35	5.38	5.38	0.5 0.5	2.2 2.2	7.6 7.5	0.3 0.3	2.2 2.2	1.6 1.6	0.2 0.2	20.2 20.3
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	5.85 5.84	5.85		0.2 0.2	1.2 1.2	6.0 5.7	0.2 0.2	2.7 2.7	0.5 0.5	<0.2 <0.2	15.9 16.0
W3	Middle	-	-	5.88	-	-	-	-	-	-	-	-
	Bottom	5.96 5.88	5.92		0.2 0.2	1.2 1.2	7.2 7.0	<0.2 <0.2	1.8 1.9	1.2 1.2	<0.2 <0.2	18.2 18.0
	Surface	3.98 4.08	4.03		0.3 0.3	2.0 2.1	5.6 5.6	<0.2 <0.2	1.2 1.2	0.8 0.8	<0.2 <0.2	14.3 14.5
W4	Middle	3.62 3.50	3.56	3.60	0.2 0.2	1.7 1.7	5.9 6.1	0.2 <0.2	1.3 1.4	1.1 1.0	0.2 0.2	16.0 15.3
	Bottom	3.22 3.17	3.20		<0.1 <0.1	2.0 2.0	6.4 6.4	<0.2 <0.2	1.6 1.5	1.1 1.1	0.2 0.2	22.0 22.2
	Surface	2.24 2.18	2.21		0.1 0.1	1.2 1.2	6.4 6.4	<0.2 <0.2	1.6 1.5	1.2 1.2	<0.2 <0.2	21.7 21.4
W5	Middle	4.47 4.44	4.46	3.12	<0.1 <0.1	2.1 2.0	6.4 6.4	<0.2 <0.2	2.2 2.3	1.2 1.2	0.2 0.2	8.1 8.3
	Bottom	2.68 2.68	2.68		0.5 0.5	2.8 2.8	5.2 5.1	<0.2 <0.2	1.4 1.4	0.6 0.5	<0.2 <0.2	15.1 15.3

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	5.05 4.91	4.98	4.98	0.1 0.1	2.2 2.1	6.2 5.9	<0.2 <0.2	2.6 2.5	0.8 0.8	<0.2 <0.2	12.2 12.4
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	5.18 5.13	5.16	5.16	0.2 0.2	1.6 1.6	5.2 5.1	<0.2 <0.2	2.6 2.6	0.7 0.7	<0.2 <0.2	9.1 9.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	4.91 4.98	4.95		0.1 0.1	2.2 2.1	7.5 7.3	<0.2 <0.2	2.0 2.1	0.9 0.9	<0.2 <0.2	21.3 21.7
W3	Middle	-	-	4.97	-	-	-	-	-	-	-	-
	Bottom	5.09 4.90	5.00		0.3 0.3	2.9 2.8	7.9 7.6	0.2 0.2	2.5 2.5	0.5 0.5	<0.2 <0.2	16.3 16.7
	Surface	4.96 4.99	4.98		0.4 0.4	2.1 2.1	5.5 5.4	<0.2 <0.2	1.0 1.0	0.6 0.5	<0.2 <0.2	16.8 16.9
W4	Middle	5.19 5.29	5.24	5.20	0.1 0.1	2.7 2.7	6.3 6.2	<0.2 <0.2	2.2 2.0	1.0 1.0	<0.2 <0.2	10.8 10.6
	Bottom	5.42 5.35	5.39		0.3 0.3	2.8 2.9	6.3 6.4	<0.2 <0.2	1.7 1.7	1.0 1.0	0.2 0.2	16.1 15.9
	Surface	5.21 5.32	5.27		0.5 0.5	2.4 2.4	5.6 5.6	0.3 0.3	2.6 2.6	0.8 0.8	<0.2 <0.2	19.4 19.3
W5	Middle	5.27 5.12	5.20	5.21	0.2 0.2	2.9 2.9	7.3 7.3	0.2 0.2	1.6 1.6	1.3 1.2	0.2 0.2	14.2 14.0
	Bottom	5.19 5.12	5.16		0.4 0.4	2.3	6.4 6.1	0.3 0.3	3.0 2.9	1.2 1.2	0.2	22.9 23.1

Appendix D - Action and Limit Levels for Marine Water Quality on 20 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 10.6</u> and <u>W2: 12.8</u>	<u>W1: 11.4</u> and <u>W2: 13.9</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 3.0</u> and <u>W2: 2.8</u>	$\underline{W1: 3.3}$ and $\underline{W2: 3.0}$
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 4.94</u> and <u>W2: 5.05</u>	<u>W1: 5.28</u> and <u>W2: 5.39</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 2.3 and W2: 2.9 or 24.0	W1: 2.5 and W2: 3.1 or 40.7
Cd	<u>W1: 0.5</u> and <u>W2: 0.4</u> or $\underline{\theta.8}$	W1: 0.5 and W2: 0.4 or <u>1.5</u>
Cu	W1: 8.7 and W2: 8.3 or 54.8	W1: 9.4 and W2: 9.0 or 95.0
Zn	W1: 16.9 and W2: 23.9 or 120.0	W1: 18.3 and W2: 25.9 or 150.0
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or $\underline{0.8}$
Hg	W1: 0.4 and W2: 0.4 or <u>5.1</u>	<u>W1: 0.4</u> and <u>W2: 0.4</u> or <u>8.7</u>
Ni	W1: 2.9 and W2: 2.5 or 36.8	W1: 3.1 and W2: 2.7 or <i>71.3</i>
Pb	W1: 1.7 and W2: 1.3 or 46.0	W1: 1.8 and W2: 1.4 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 20 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 10.4</u>	<u>W5: 11.3</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 5.4</u>	<u>W5: 5.9</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 3.44</u>	<u>W5: 3.66</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Treavy metals	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.0</u> or <u>24.0</u>	<u>W5: 3.2</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u><i>0.8</i></u>	<u>W5: 0.6</u> or <u>1.5</u>
Cu	<u>W5: 8.4</u> or <u>54.8</u>	<u>W5: 9.1</u> or <u>95.0</u>
Zn	<u>W5: 23.3</u> or <u>120.0</u>	<u>W5: 25.2</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Нд	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.5</u> or <u>36.8</u>	<u>W5: 2.8</u> or <u>71.3</u>
Pb	<u>W5: 1.6</u> or <u>46.0</u>	<u>W5: 1.7</u> or <u>82.6</u>

- $For SS \ \& \ turbidity \ non-compliance \ of \ the \ water \ quality \ limits \ occur \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 20 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1		-	-	-	-	-	-	-		-	5.6	-	-		-	-	
W1	Sunny	Calm	10:04	Middle	0.9	28.4 28.4	28.4	7.5 7.5	7.5	22.4 22.4	22.4	81.1 81.1	81.1	5.6 5.6	5.6	5.0	2.6 2.4	2.5	2.5	8.8 8.8	8.8	8.8
				Bottom	1	1 1	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.3	-	-		-	-	
W2	Sunny	Calm	10:20	Middle	1.4	28.4 28.3	28.4	7.5 7.5	7.5	19.4 18.6	19.0	75.3 74.8	75.1	5.3 5.3	5.3	5.5	2.2 2.3	2.3	2.3	10.6 10.8	10.7	10.7
				Bottom			-	-	-	-	-		-	-	-	-	-			-	-	
				Surface	1	28.4 28.4	28.4	7.5 7.5	7.5	19.0 18.1	18.6	73.7 73.4	73.6	5.2 5.2	5.2	5.2	2.4 2.4	2.4		4.8 4.8	4.8	
W3	Sunny	Calm	10:37	Middle	1		-	-	-	-	-	-	-	-	-	5.2	-	-	2.6	-	-	7.1
				Bottom	3	28.2 28.1	28.2	7.2 7.2	7.2	32.4 32.7	32.6	78.4 74.1	76.3	5.1 4.8	5.0	5.0	2.8 2.7	2.8		9.3 9.4	9.4	
				Surface	1	27.4 27.4	27.4	7.7 7.7	7.7	33.5 33.5	33.5	99.5 99.5	99.5	6.5 6.5	6.5	6.6	1.6 1.5	1.6		5.9 5.9	5.9	
W4	Sunny	Calm	10:54	Middle	4	27.4 27.4	27.4	7.6 7.6	7.6	33.7 33.7	33.7	100.4 100.3	100.4	6.6 6.6	6.6	0.0	1.6 1.6	1.6	1.8	6.3 6.4	6.4	5.4
				Bottom	7	27.3 27.3	27.3	7.5 7.5	7.5	33.9 33.9	33.9	93.2 90.6	91.9	6.1 5.9	6.0	6.0	2.0 2.1	2.1		3.8 3.8	3.8	
			-	Surface	1	27.4 27.4	27.4	7.6 7.6	7.6	33.9 33.9	33.9	83.9 87.6	85.8	5.5 5.7	5.6	5.9	2.3 2.3	2.3		4.0 4.1	4.1	_
W5	Sunny	Calm	11:08	Middle	4	27.4 27.4	27.4	7.5 7.5	7.5	33.9 33.9	33.9	93.2 93.2	93.2	6.1 6.1	6.1	5.9	2.0 2.0	2.0	2.2	3.5 3.5	3.5	4.2
				Bottom	7	27.3 27.4	27.4	7.5 7.5	7.5	33.1 33.9	33.5	84.3 84.7	84.5	5.6 5.6	5.6	5.6	2.4 2.4	2.4		5.1 5.1	5.1	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 20 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	-	· ·	-			-	-		-		
W1	Sunny	Calm	16:55	Middle	1.3	28.4 28.5	28.5	7.7 7.7	7.7	24.9 23.7	24.3	61.6 61.2	61.4	4.2 4.2	4.2	4.2	4.7 4.6	4.7	4.7	5.0 4.8	4.9	4.9
				Bottom	-		-	-	-	1 1	-	-	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	1 1	-	-	-	-	-	4.9	-	-		-	-	
W2	Sunny	Calm	16:41	Middle	1.3	28.6 28.6	28.6	7.7 7.7	7.7	28.8 29.0	28.9	74.6 74.7	74.7	4.9 4.9	4.9	4.5	2.9 2.9	2.9	2.9	4.8 4.6	4.7	4.7
				Bottom	-		-	-	-	1 1	-	-	-	-	-	-	-	-		-	-	
				Surface	1	28.1 28.0	28.1	7.7 7.5	7.6	30.0 30.3	30.2	68.2 70.0	69.1	4.5 4.6	4.6	4.6	4.4 4.7	4.6		9.3 9.6	9.5	
W3	Sunny	Calm	16:28	Middle	-		-	-	-		-	-	-	-	-	4.0	-		4.9	-	-	7.4
				Bottom	4	27.9 27.9	27.9	7.8 7.8	7.8	32.5 32.5	32.5	62.9 62.9	62.9	4.1 4.1	4.1	4.1	5.1 5.2	5.2		5.1 5.2	5.2	
				Surface	1	27.3 27.3	27.3	7.6 7.6	7.6	33.3 33.3	33.3	92.0 92.0	92.0	6.1 6.1	6.1	6.2	3.8 3.7	3.8		7.2 6.9	7.1	
W4	Sunny	Calm	16:13	Middle	3.5	27.2 27.3	27.3	7.6 7.6	7.6	33.4 33.3	33.4	93.3 93.5	93.4	6.2 6.2	6.2	0.2	2.8 2.9	2.9	3.5	7.8 7.7	7.8	8.2
				Bottom	6	27.0 27.1	27.1	7.5 7.5	7.5	33.5 33.4	33.5	87.7 87.8	87.8	5.8 5.8	5.8	5.8	3.8 3.7	3.8		9.9 9.6	9.8	
				Surface	1	27.1 27.1	27.1	7.6 7.6	7.6	31.9 32.1	32.0	91.6 91.7	91.7	6.1 6.1	6.1	6.2	3.3 3.2	3.3		6.9 6.8	6.9	
W5	Sunny	Calm	15:54	Middle	4	27.0 27.0	27.0	7.6 7.6	7.6	32.9 32.9	32.9	94.9 94.9	94.9	6.3 6.3	6.3	0.2	3.5 3.5	3.5	4.5	8.1 8.1	8.1	7.9
				Bottom	7	26.9 26.9	26.9	7.5 7.5	7.5	33.4 33.4	33.4	93.3 93.3	93.3	6.2 6.2	6.2	6.2	6.9 6.2	6.6		8.8 8.6	8.7	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 20 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Бериі	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L
	Surface		-				1 1			-	1 1	-
W1	Middle	3.37 3.37	3.37	3.37	0.4 0.4	1.9 1.9	7.2 7.3	0.3 0.3	2.4 2.4	1.4 1.4	0.2 0.2	14.2 13.9
	Bottom	1 1	-		1 1	-	1 1	-	1 1	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	3.50 3.41	3.46	3.46	0.3 0.3	2.4 2.4	7.0 6.9	0.3 0.3	2.0 2.1	1.0 1.1	0.2 0.2	20.2 19.6
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	3.44 3.54	3.49		0.3 0.3	1.5 1.5	7.9 7.7	<0.2 <0.2	1.2 1.3	0.7 0.8	<0.2 <0.2	18.2 18.1
W3	Middle		-	3.49						-		-
	Bottom	3.52 3.46	3.49		0.2 0.2	2.0 2.0	5.9 5.9	0.2 0.2	1.1 1.1	1.1 1.1	0.2 0.2	11.5 10.9
	Surface	0.34 0.34	0.34		<0.1 <0.1	2.7 2.6	5.9 5.9	0.3 0.3	2.7 2.6	1.0 0.9	<0.2 <0.2	15.7 15.4
W4	Middle	0.35 0.35	0.35	0.35	0.3 0.3	2.1 2.2	7.6 7.7	0.2 0.2	1.1 1.1	0.8 0.8	0.2 <0.2	13.6 13.3
	Bottom	0.35 0.36	0.36		0.1 0.1	1.8 1.8	7.2 7.2	0.2 0.2	1.7 1.6	0.6 0.6	<0.2 <0.2	8.0 7.9
	Surface	0.36 0.37	0.37		<0.1 <0.1	2.2 2.2	5.6 5.6	0.3 0.3	1.6 1.6	1.5 1.5	<0.2 <0.2	14.8 15.4
W5	Middle	0.35 0.35	0.35	0.36	0.2 0.2	1.2 1.2	6.7 6.7	0.2 0.2	2.9 2.9	0.8 0.8	<0.2 <0.2	14.0 14.3
	Bottom	0.36 0.36	0.36		0.4 0.4	2.8 2.8	7.7 7.7	<0.2 <0.2	1.2 1.2	1.0 1.0	<0.2 <0.2	17.7 17.8

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.63 2.56	2.60	2.60	0.4 0.4	1.3 1.4	5.9 5.8	<0.2 <0.2	1.3 1.3	0.7 0.7	<0.2 <0.2	16.6 17.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.56 2.34	2.45	2.45	0.2 0.2	2.8 2.8	7.3 7.3	<0.2 <0.2	1.3 1.3	0.8 0.8	0.2 0.2	14.3 14.8
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.47 2.67	2.57		0.3 0.3	2.0 2.0	5.8 5.6	<0.2 0.2	2.6 2.5	0.7 0.7	<0.2 <0.2	17.3 17.9
W3	Middle	-	-	2.57	-	-	-	-	-	-	-	-
	Bottom	2.52 2.61	2.57		0.4 0.4	1.5 1.5	6.5 6.4	0.2 0.2	1.8 1.8	0.8 0.8	<0.2 <0.2	18.9 19.3
	Surface	2.12 2.12	2.12		0.5 0.5	1.9 1.8	5.2 5.4	0.2 0.2	2.5 2.4	0.7 0.7	<0.2 <0.2	15.2 14.8
W4	Middle	2.12 2.12	2.12	2.12	0.2 0.2	1.2 1.2	6.1 6.0	0.2 <0.2	1.9 1.9	0.6 0.6	<0.2 <0.2	10.5 10.7
•	Bottom	2.12 2.12	2.12		0.2 0.2	2.7 2.7	4.9 4.8	<0.2 <0.2	1.3 1.3	1.6 1.6	<0.2 <0.2	19.8 19.6
	Surface	2.12 2.12	2.12		0.5 0.5	2.6 2.5	7.3 7.5	0.2 0.2	2.6 2.5	1.6 1.6	0.2 0.2	19.9 20.2
W5	Middle	2.12 2.12	2.12	2.12	0.4 0.4	2.2 2.2	7.9 8.1	0.2 <0.2	1.1 1.2	1.0 0.9	0.2 0.2	18.1 18.1
•	Bottom	2.12	2.12		0.4 0.5	2.7 2.7	5.8 5.5	0.3 0.3	2.6 2.7	1.4 1.4	<0.2 <0.2	20.2

Appendix D - Action and Limit Levels for Marine Water Quality on 22 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 15.1</u> and <u>W2: 18.5</u>	<u>W1: 16.4</u> and <u>W2: 20.0</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 2.0</u> and <u>W2: 2.0</u>	<u>W1: 2.2</u> and <u>W2: 2.2</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 2.09</u> and <u>W2: 2.06</u>	<u>W1: 2.19</u> and <u>W2: 2.15</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 2.6 and W2: 2.5 or 24.0	<u>W1: 2.8</u> and <u>W2: 2.7</u> or <u>40.7</u>
Cd	<u>W1: 0.5</u> and <u>W2: 0.6</u> or $\underline{0.8}$	W1: 0.5 and W2: 0.7 or <u>1.5</u>
Cu	W1: 7.9 and W2: 8.0 or 54.8	W1: 8.6 and W2: 8.6 or 95.0
Zn	W1: 22.7 and W2: 25.1 or 120.0	W1: 24.6 and W2: 27.2 or 150.0
Ag	<u>W1: 0.2</u> and <u>W2: 0.2</u> or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>
Hg	<u>W1: 0.2</u> and <u>W2: 0.2</u> or <u>5.1</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>8.7</u>
Ni	W1: 3.3 and W2: 3.0 or 36.8	W1: 3.6 and W2: 3.3 or 71.3
Pb	W1: 1.4 and W2: 1.2 or 46.0	W1: 1.6 and W2: 1.3 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 22 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
SS in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 19.9</u>	<u>W5: 21.6</u>
(Bottom)	Or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 5.6</u>	<u>W5: 6.1</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 1.22</u>	<u>W5: 1.25</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Haaviy matala	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.0</u> or <u>24.0</u>	<u>W5: 3.3</u> or <u>40.7</u>
Cd	<u>W5: 0.3</u> or <u>0.8</u>	<u>W5: 0.3</u> or <u>1.5</u>
Cu	<u>W5: 8.1</u> or <u>54.8</u>	<u>W5: 8.8</u> or <u>95.0</u>
Zn	<u>W5: 20.7</u> or <u>120.0</u>	<u>W5: 22.4</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.7</u> or <u>36.8</u>	<u>W5: 3.0</u> or <u>71.3</u>
Pb	<u>W5: 1.4</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 22 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	F	Н	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-		-	-	-	-	-	6.1	-	-		-	-	
W1	Cloudy	Calm	12:08	Middle	1	27.0 26.6	26.8	7.2 7.2	7.2	26.6 29.2	27.9	89.3 89.4	89.4	6.1 6.1	6.1	0.1	1.7 1.6	1.7	1.7	12.6 12.5	12.6	12.6
				Bottom	-		-	-	-	1 1	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-		-	-	1 1	-	-	-	-	-	5.7	-	-		-	-	
W2	Cloudy	Calm	11:57	Middle	1.2	26.3 26.9	26.6	7.2 7.2	7.2	29.8 27.6	28.7	82.8 84.0	83.4	5.6 5.7	5.7	3.7	1.7 1.7	1.7	1.7	15.4 15.4	15.4	15.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	26.6 26.9	26.8	7.1 7.1	7.1	29.2 27.8	28.5	103.6 100.1	101.9	6.9 6.7	6.8	6.8	0.8 0.8	0.8		10.6 10.3		
W3	Cloudy	Calm	11:49	Middle			-	-	-		-	-	-	-		0.0	-		1.8	-	-	9.8
				Bottom	4	25.9 26.6	26.3	6.8 6.8	6.8	30.2 29.1	29.7	73.2 72.5	72.9	4.8 4.8	4.8	4.8	2.6 2.7	2.7		8.9 9.0	9.0	
				Surface	1	26.0 25.9	26.0	7.3 7.3	7.3	30.1 30.2	30.2	131.3 131.4	131.4	9.7 9.7	9.7	9.6	1.5 1.5	1.5		10.9 10.9	10.9	
W4	Cloudy	Calm	11:30	Middle	4	26.9 27.9	27.4	7.3 7.2	7.3	28.0 26.4	27.2	129.8 126.9	128.4	9.6 9.4	9.5	9.0	1.6 1.5	1.6	1.6	10.1 9.6	9.9	11.5
				Bottom	7	26.6 27.8	27.2	7.1 7.1	7.1	29.1 25.9	27.5	118.6 108.8	113.7	8.8 8.1	8.5	8.5	1.6 1.6	1.6		13.4 13.7	13.6	
		_	-	Surface	1	26.3 27.1	26.7	7.1 7.2	7.2	30.1 28.1	29.1	94.1 98.0	96.1	7.0 7.3	7.2	7.3	1.3 1.3	1.3		10.3 10.4	10.4	
W5	Cloudy	Calm	11:23	Middle	3.5	25.8 26.8	26.3	7.1 7.1	7.1	30.7 29.0	29.9	96.5 100.2	98.4	7.2 7.4	7.3	1.3	2.1 2.1	2.1	1.9	12.1 12.6	12.6	11.0
				Bottom	6	27.4 26.7	27.1	7.1 7.1	7.1	28.3 29.2	28.8	93.0 91.7	92.4	6.9 6.8	6.9	6.9	2.2 2.2	2.2		10.2 10.1	10.2	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 22 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	()	Tem	p (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-	-	-	-	-		-		-	-		-	-	
W1	Cloudy	Calm	15:57	Middle	1	26.6 26.7	26.7	7.2 7.2	7.2	28.5 28.6	28.6	86.5 83.7	85.1	5.9 5.7	5.8	5.8	1.2 1.2	1.2	1.2	11.6 11.5	11.6	11.6
				Bottom		-	-		-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-		-	6.0	-	-		-	-	
W2	Cloudy	Calm	16:08	Middle	1.3	26.6 27.0	26.8	7.2 7.2	7.2	28.7 28.4	28.6	86.9 87.9	87.4	5.9 6.0	6.0	0.0	1.3 1.3	1.3	1.3	14.6 14.6	14.6	14.6
				Bottom	-	-	-	-	-	-	-	-	-		-	1	-	-		-	-	
				Surface	1	25.9 25.9	25.9	7.2 7.2	7.2	30.0 30.1	30.1	88.9 81.3	85.1	6.1 5.8	6.0	6.0	1.5 1.5	1.5		15.1 15.3	15.2	
W3	Cloudy	Calm	16:15	Middle		-	-	-	-	-	-	-	-		-	0.0	-		1.6	-	-	15.4
				Bottom	4	25.9 25.8	25.9	6.9 6.9	6.9	30.1 30.1	30.1	62.2 65.9	64.1	4.3 4.6	4.5	4.5	1.6 1.6	1.6		15.4 15.5	15.5	
				Surface	1	23.1 23.2	23.2	7.2 7.2	7.2	33.7 33.6	33.7	117.6 119.4	118.5	8.7 8.8	8.8	8.7	2.8 3.0	2.9		5.4 5.5	5.5	
W4	Cloudy	Calm	16:34	Middle	3.5	23.2 23.1	23.2	7.1 7.1	7.1	33.7 33.7	33.7	110.8 118.3	114.6	8.2 8.8	8.5	0.7	3.1 3.0	3.1	3.0	10.5 10.4	10.5	7.9
				Bottom	6	23.1 27.9	25.5	7.1 7.1	7.1	33.7 27.2	30.5	103.9 100.6	102.3	7.7 7.5	7.6	7.6	3.1 2.6	2.9		7.7 7.5	7.6	
_		_		Surface	1	27.5 27.5	27.5	7.2 7.2	7.2	28.1 28.6	28.4	104.1 106.1	105.1	7.7 7.9	7.8	8.0	3.1 3.0	3.1		6.4 6.2	6.3	
W5	Cloudy	Calm	16:43	Middle	4	27.4 27.6	27.5	7.1 7.1	7.1	28.3 28.5	28.4	110.0 107.0	108.5	8.2 7.9	8.1	0.0	4.5 4.4	4.5	4.7	13.9 13.5	12.2	
				Bottom	7	27.1 27.9	27.5	7.1 7.1	7.1	28.6 27.7	28.2	89.9 88.7	89.3	6.7 6.6	6.7	6.7	6.5 6.6	6.6		16.7 16.5	16.6	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 22 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	μg/L
	Surface		-									-
W1	Middle	1.00 0.98	0.99	0.99	0.4 0.4	2.2 2.1	6.5 6.7	0.2 0.2	2.8 2.7	1.2 1.2	<0.2 <0.2	19.1 18.8
	Bottom	1 1	-		1 1	-	1 1	-	1 1	1 1	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	0.99 0.94	0.97	0.97	0.5 0.5	2.1 2.0	6.7 6.6	0.2 0.2	2.5 2.5	1.0 1.0	<0.2 <0.2	21.4 20.5
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	0.98 0.97	0.98		<0.1 <0.1	1.3 1.3	5.6 5.4	<0.2 <0.2	2.2 2.2	1.1 1.2	<0.2 <0.2	10.9 10.9
W3	Middle	-	-	0.98	-	-	-	-	-	-	-	-
	Bottom	0.99 0.97	0.98		0.1 0.1	1.6 1.6	5.2 5.0	<0.2 <0.2	2.8 2.8	1.0 1.0	<0.2 <0.2	14.4 14.1
	Surface	0.42 0.43	0.43		0.3 0.3	1.6 1.5	5.4 5.3	<0.2 <0.2	1.9 1.9	0.8 0.8	<0.2 <0.2	11.8 11.9
W4	Middle	0.42 0.40	0.41	0.42	0.4 0.4	2.8 2.8	6.2 6.1	<0.2 <0.2	2.0 2.0	1.2 1.2	<0.2 <0.2	20.7 20.9
	Bottom	0.42 0.43	0.43		0.4 0.4	2.0 2.0	7.1 7.0	<0.2 <0.2	3.0 3.0	0.6 0.6	<0.2 <0.2	23.1 22.4
	Surface	0.42 0.42	0.42		0.1 0.1	2.3 2.4	6.5 6.3	<0.2 <0.2	1.9 1.9	0.7 0.8	<0.2 <0.2	22.6 21.9
W5	Middle	0.42 0.42	0.42	0.42	0.2 0.2	2.9 2.9	5.4 5.5	0.2 0.2	2.3 2.3	1.1 1.1	<0.2 <0.2	12.9 13.1
	Bottom	0.42 0.43	0.43		0.1 0.1	1.0 1.1	7.4 7.4	0.2 0.2	1.9 1.8	1.4 1.4	<0.2 <0.2	17.2 17.2

Location	Donth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	0.82 0.83	0.83	0.83	0.1 0.1	2.6 2.6	7.8 7.8	<0.2 <0.2	1.6 1.6	1.4 1.4	<0.2 <0.2	10.3 10.1
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	0.67 0.69	0.68	0.68	<0.1 <0.1	1.0 1.0	7.7 7.7	<0.2 <0.2	2.3 2.2	1.3 1.3	<0.2 <0.2	18.1 17.8
	Bottom	-	-			-	1 1	-	1 1	-	-	-
	Surface	0.70 0.69	0.70		0.2 0.2	1.3 1.3	6.1 5.9	<0.2 <0.2	2.4 2.3	0.8 0.8	<0.2 <0.2	15.2 15.1
W3	Middle	-	-	0.69	-	-		-	-	-	-	-
	Bottom	0.70 0.68	0.69		0.1 0.1	1.0 1.0	6.2 6.0	<0.2 <0.2	2.9 2.9	0.7 0.7	<0.2 <0.2	20.5 21.4
	Surface	0.26 0.25	0.26		<0.1 <0.1	1.6 1.6	7.1 6.8	<0.2 <0.2	2.2 2.2	1.0 1.0	0.2 <0.2	18.3 18.0
W4	Middle	0.27 0.28	0.28	0.27	0.1 0.1	2.5 2.6	5.5 5.4	0.2 0.2	1.4 1.4	0.5 0.5	<0.2 <0.2	15.1 14.9
	Bottom	0.27 0.27	0.27		0.4 0.4	1.6 1.5	6.2 6.1	<0.2 <0.2	2.3 2.2	0.8 0.8	<0.2 <0.2	13.6 13.7
	Surface	0.27 0.27	0.27		0.1 0.1	2.7 2.7	8.2 8.4	0.2 0.2	2.3 2.3	1.2 1.2	<0.2 <0.2	9.1 8.9
W5	Middle	0.27 0.27	0.27	0.27	0.1 0.1	2.7 2.6	5.7 5.7	0.3 0.3	2.0 1.9	1.1 1.1	0.2 0.2	22.4 22.7
	Bottom	0.27 0.26	0.27		0.5 0.5	2.2 2.2	6.5 6.2	<0.2 <0.2	2.6 2.6	1.3 1.3	0.2 0.2	20.4 19.9

Appendix D - Action and Limit Levels for Marine Water Quality on 24 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 9.1</u> and <u>W2: 6.7</u>	<u>W1: 9.9</u> and <u>W2: 7.3</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 11.6</u> and <u>W2: 10.0</u>	<u>W1: 12.6</u> and <u>W2: 10.8</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 7.12</u> and <u>W2: 7.67</u>	<u>W1: 7.64</u> and <u>W2: 8.24</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.0 and W2: 2.8 or 24.0	W1: 3.3 and W2: 3.1 or 40.7
Cd	<u>W1: 0.6</u> and <u>W2: 0.6</u> or $\underline{0.8}$	W1: 0.7 and W2: 0.7 or <u>1.5</u>
Cu	W1: 9.5 and W2: 9.1 or 54.8	W1: 10.3 and W2: 9.9 or 95.0
Zn	W1: 19.4 and W2: 24.8 or 120.0	<u>W1: 21.1</u> and <u>W2: 26.8</u> or <u>150.0</u>
Ag	W1: 0.2 and W2: 0.2 or 0.5	W1: 0.3 and W2: 0.3 or 0.8
Нд	W1: 0.4 and W2: 0.2 or <u>5.1</u>	W1: 0.4 and W2: 0.3 or <u>8.7</u>
Ni	<u>W1: 3.4</u> and <u>W2: 3.3</u> or <u>36.8</u>	W1: 3.6 and W2: 3.6 or 71.3
Pb	W1: 1.8 and W2: 1.9 or 46.0	W1: 2.0 and W2: 2.1 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 24 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 6.0</u>	<u>W5: 6.5</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 7.3</u>	<u>W5: 7.9</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 5.38</u>	<u>W5: 5.75</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Ticavy metais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 3.5</u> or <u>24.0</u>	<u>W5: 3.8</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u>0.8</u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 7.6</u> or <u>54.8</u>	<u>W5: 8.3</u> or <u>95.0</u>
Zn	<u>W5: 19.8</u> or <u>120.0</u>	<u>W5: 21.5</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Нд	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 2.9</u> or <u>36.8</u>	<u>W5: 3.1</u> or <u>71.3</u>
Pb	<u>W5: 1.5</u> or <u>46.0</u>	<u>W5: 1.6</u> or <u>82.6</u>

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 24 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-		-	-	-		-	3.3	-	-		-	-	
W1	Sunny	Calm	11:13	Middle	0.6	25.2 25.4	25.3	7.9 7.9	7.9	24.5 23.3	23.9	45.9 44.9	45.4	3.3 3.2	3.3	3.3	9.6 9.8	9.7	9.7	7.6 7.5	7.6	7.6
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	2.7	-	-		-	-	
W2	Sunny	Calm	11:26	Middle	1.2	24.7 24.7	24.7	7.8 7.8	7.8	27.2 27.1	27.2	38.0 36.2	37.1	2.7 2.6	2.7	2.1	8.4 8.2	8.3	8.3	5.6 5.6	5.6	5.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	25.2 25.1	25.2	7.6 7.7	7.7	24.9 24.9	24.9	28.0 28.8	28.4	2.0 2.1	2.1	2.1	6.3 6.3	6.3		3.7 3.6	3.7	
W3	Sunny	Calm	11:31	Middle	-		-	-	-	-	-	-	-	-	-	2.1	-	-	8.7	-	-	3.8
				Bottom	4	24.3 24.3	24.3	7.9 7.9	7.9	28.4 28.4	28.4	37.7 38.6	38.2	2.7 2.8	2.8	2.8	11.0 11.0	11.0		3.8 3.8	3.8	
				Surface	1	24.9 24.9	24.9	8.0 8.0	8.0	26.4 26.5	26.5	66.5 62.8	64.7	4.7 4.5	4.6	4.2	5.4 5.3	5.4		3.6 3.6	3.6	
W4	Sunny	Calm	11:47	Middle	3.5	24.7 24.6	24.7	8.0 8.0	8.0	27.4 27.5	27.5	52.4 51.5	52.0	3.7 3.7	3.7	4.2	5.4 5.3	5.4	5.9	3.0 2.9	3.0	3.6
				Bottom	6	24.4 24.4	24.4	8.0 8.0	8.0	28.1 28.2	28.2	50.9 48.4	49.7	3.6 3.5	3.6	3.6	6.8 6.8	6.8		4.3 4.2	4.3	
		-		Surface	1	24.9 25.0	25.0	7.9 7.9	7.9	26.4 26.1	26.3	60.9 62.0	61.5	4.3 4.4	4.4	4.7	3.0 3.0	3.0		3.0 3.1	3.1	
W5	Sunny	Calm	11:57	Middle	4	24.1 24.1	24.1	8.1 8.1	8.1	30.0 29.9	30.0	71.0 71.2	71.1	5.0 5.0	5.0	4.7	4.2 4.5	4.4	4.3	1.3 1.3	1.3	3.2
				Bottom	7	23.7 23.6	23.7	8.2 8.2	8.2	31.1 31.2	31.2	68.5 65.6	67.1	4.9 4.7	4.8	4.8	5.6 5.6	5.6		5.1 5.1	5.1	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 24 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
LUCATION	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-		-	-	-	-	-			-	-		-	-	
W1	Fine	Calm	16:49	Middle	0.8	24.5 24.5	24.5	7.8 7.8	7.8	27.1 28.3	27.7	30.7 33.5	32.1	2.2 2.4	2.3	2.3	5.8 5.8	5.8	5.8	2.6 2.5	2.6	2.6
				Bottom	1	-	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	1 1	-	-	-	3.0	-	-		-	-	
W2	Fine	Calm	17:03	Middle	1.3	24.4 24.4	24.4	7.9 7.9	7.9	28.5 28.5	28.5	42.3 42.7	42.5	3.0 3.0	3.0	0.0	6.3 6.3	6.3	6.3	3.9 3.8	3.9	3.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	1	24.6 24.5	24.6	7.9 7.9	7.9	28.0 28.1	28.1	32.6 33.9	33.3	2.3 2.4	2.4	2.4	4.2 4.2	4.2		4.0 3.9	4.0	
W3	Fine	Calm	17:12	Middle	-	-	-	-	-	-	-	-	-	-	-	2.4	-	-	7.3	-	-	3.9
				Bottom	4	24.5 24.5	24.5	7.9 7.9	7.9	28.6 28.7	28.7	21.9 21.6	21.8	1.6 1.5	1.6	1.6	10.2 10.3	10.3		3.6 3.7	3.7	
				Surface	1	24.9 25.0	25.0	8.0 8.0	8.0	26.3 26.2	26.3	60.0 57.7	58.9	4.3 4.1	4.2	4.0	5.4 5.5	5.5		4.3 4.3	4.3	
W4	Fine	Calm	17:29	Middle	4	24.6 24.6	24.6	8.0 8.0	8.0	27.6 27.6	27.6	51.5 51.5	51.5	3.7 3.7	3.7	4.0	5.7 5.8	5.8	6.9	5.3 5.4	5.4	4.4
				Bottom	7	24.4 24.4	24.4	8.0 8.0	8.0	28.2 28.2	28.2	46.7 45.4	46.1	3.3 3.2	3.3	3.3	9.5 9.5	9.5		3.6 3.5	3.6	
				Surface	1	25.0 24.9	25.0	7.9 8.0	8.0	26.0 26.5	26.3	63.4 63.1	63.3	4.5 4.5	4.5	4.8	5.7 5.7	5.7		3.8 3.9	3.9	
W5	Fine	Calm	17:42	Middle	4	24.1 24.1	24.1	8.1 8.1	8.1	29.9 29.9	29.9	71.3 71.4	71.4	5.1 5.1	5.1	4.0	5.7 5.7	5.7	6.1	4.0 4.1	4.1	4.3
				Bottom	7	23.4 23.4	23.4	8.2 8.2	8.2	31.8 31.8	31.8	64.4 65.5	65.0	4.6 4.6	4.6	4.6	7.0 7.0	7.0		5.0 5.0	5.0	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 24 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μg/L	μ g/L
	Surface		-				1 1				1 1	
W1	Middle	5.20 5.17	5.19	5.19	0.5 0.5	2.5 2.5	7.9 7.9	0.3 0.3	2.8 2.8	1.5 1.5	0.2 0.2	16.4 16.0
	Bottom	-	-		-		-	-	-	-	-	
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	5.57 5.72	5.65	5.65	0.5 0.5	2.4 2.3	7.7 7.5	0.2 0.2	2.8 2.7	1.6 1.6	0.2 0.2	21.1 20.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	5.33 5.16	5.25		0.4 0.4	2.4 2.4	5.8 5.8	<0.2 <0.2	1.2 1.2	1.6 1.5	<0.2 <0.2	18.6 18.3
W3	Middle	-	-	5.28	-		-	-	-	-	-	
	Bottom	5.42 5.19	5.31		0.3 0.3	1.0 1.0	7.3 7.2	<0.2 <0.2	2.3 2.2	1.3 1.3	<0.2 <0.2	18.3 17.5
	Surface	3.89 3.84	3.87		0.1 0.1	2.0 2.0	7.0 6.8	<0.2 <0.2	1.2 1.2	1.0 1.0	<0.2 <0.2	22.4 22.2
W4	Middle	3.77 3.70	3.74	3.81	0.2 0.2	2.8 2.8	6.2 6.3	0.2 0.2	2.1 2.1	1.0 1.0	<0.2 <0.2	13.7 13.6
	Bottom	3.82 3.82	3.82		0.1 0.1	2.9 2.9	5.5 5.5	<0.2 <0.2	2.6 2.6	0.5 0.5	<0.2 <0.2	20.6 21.0
	Surface	3.62 3.63	3.63		0.1 0.1	2.6 2.6	7.5 7.7	0.2 0.2	2.5 2.4	0.6 0.6	0.2 0.2	15.9 16.1
W5	Middle	3.88 3.74	3.81	3.69	<0.1 <0.1	1.4 1.4	5.9 6.0	0.2 0.2	1.7 1.7	0.8	<0.2 <0.2	14.4 14.3
	Bottom	3.69 3.60	3.65		0.1 0.1	3.0 3.0	6.3 6.3	<0.2 <0.2	1.9 1.9	0.6 0.6	0.2 0.2	15.6 15.7

Leastion	Donth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	4.92 4.98	4.95	4.95	0.3 0.3	1.1 1.1	5.9 5.9	0.2 0.2	1.9 1.8	0.9 0.9	<0.2 <0.2	10.0 9.8
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	4.95 4.88	4.92	4.92	0.3 0.3	1.8 1.9	6.1 6.2	0.2 0.2	1.4 1.4	1.4 1.4	<0.2 <0.2	17.9 17.9
	Bottom	-	-			-	1 1	-	-	-	-	-
	Surface	5.21 5.01	5.11		<0.1 <0.1	2.9 2.9	7.9 7.6	0.2 0.2	2.2 2.3	0.6 0.6	<0.2 <0.2	15.6 16.0
W3	Middle	-	-	5.23	-	-		-	-	-	-	-
	Bottom	5.44 5.26	5.35		0.1 0.1	2.8 2.8	6.1 5.8	0.2 0.2	2.0 2.0	1.0 1.0	<0.2 <0.2	8.8 9.2
	Surface	3.63 3.59	3.61		0.2 0.2	2.6 2.6	5.4 5.5	0.2 0.2	1.3 1.3	0.6 0.6	<0.2 <0.2	21.2 20.7
W4	Middle	4.10 3.98	4.04	3.88	0.1 0.1	1.8 1.8	5.8 5.5	<0.2 <0.2	1.8 1.8	0.6 0.6	0.2 0.2	20.5 20.0
	Bottom	4.05 3.95	4.00		0.1 0.1	2.2 2.2	6.9 6.8	<0.2 <0.2	2.9 2.8	0.9 0.9	0.2 0.2	16.3 16.2
	Surface	4.04 3.90	3.97		0.5 0.5	2.8 2.8	7.8 8.0	0.2 0.3	2.7 2.7	1.4 1.4	0.2 0.2	22.1 22.1
W5	Middle	3.68 3.76	3.72	3.73	0.3 0.3	3.1 3.0	5.7 5.6	0.3 0.3	2.2 2.2	1.5 1.4	0.2 0.2	16.8 16.5
	Bottom	3.58 3.44	3.51		0.4 0.4	2.9 2.9	5.5 5.6	0.2 0.2	2.4 2.3	0.9 0.9	<0.2 <0.2	10.8 10.8

Appendix D - Action and Limit Levels for Marine Water Quality on 27 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W1: 15.0</u> and <u>W2: 13.7</u>	<u>W1: 16.3</u> and <u>W2: 14.8</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W1: 13.4</u> and <u>W2: 24.2</u>	W1: 14.6 and W2: 26.3
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W1: 3.92</u> and <u>W2: 3.87</u>	<u>W1: 4.18</u> and <u>W2: 4.12</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
	120% of upstream control station's level	130% of upstream control station's level
Heavy metals	at the same tide of the same day	at the same tide of the same day
	or	or
Cr	W1: 3.4 and W2: 3.4 or 24.0	W1: 3.7 and W2: 3.7 or 40.7
Cd	<u>W1: 0.5</u> and <u>W2: 0.5</u> or $\underline{0.8}$	W1: 0.5 and W2: 0.5 or <u>1.5</u>
Cu	W1: 8.0 and W2: 8.8 or 54.8	W1: 8.6 and W2: 9.5 or 95.0
Zn	W1: 26.9 and W2: 24.5 or 120.0	W1: 29.1 and W2: 26.5 or 150.0
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or <u>0.8</u>
Hg	W1: 0.4 and W2: 0.4 or 5.1	W1: 0.4 and W2: 0.4 or <u>8.7</u>
Ni	W1: 3.6 and W2: 2.4 or 36.8	W1: 3.9 and W2: 2.6 or 71.3
Pb	W1: 1.1 and W2: 1.4 or 46.0	W1: 1.2 and W2: 1.5 or 82.6

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 27 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level
DO in mg/L (Bottom)	0.01	0.01
	120% of upstream control station's SS at	130% of upstream control station's SS at
CC in ma/I	the same tide of the same day	the same tide of the same day
SS in mg/L (Bottom)	<u>W5: 14.4</u>	<u>W5: 15.6</u>
(Bottom)	or	or
	<u>20.4</u>	<u>29.3</u>
	120% of upstream control station's	130% of upstream control station's
	turbidity at the same tide of the same day	turbidity at the same tide of the same day
Turbidity in NTU	<u>W5: 10.8</u>	<u>W5: 11.7</u>
	or	or
	<u>21.9</u>	<u>29.7</u>
	120% of upstream control station's	130% of upstream control station's
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate
mg/L (depth average)	injection	injection
	<u>W5: 2.59</u>	<u>W5: 2.73</u>
	or	or
	<u>5.9</u>	<u>7.1</u>
Heavy metals	120% of upstream control station's level	130% of upstream control station's level
Ticavy metais	at the same tide of the same day	at the same tide of the same day
Cr	<u>W5: 2.9</u> or <u>24.0</u>	<u>W5: 3.1</u> or <u>40.7</u>
Cd	<u>W5: 0.5</u> or <u>0.8</u>	<u>W5: 0.5</u> or <u>1.5</u>
Cu	<u>W5: 8.2</u> or <u>54.8</u>	<u>W5: 8.9</u> or <u>95.0</u>
Zn	<u>W5: 18.2</u> or <u>120.0</u>	<u>W5: 19.7</u> or <u>150.0</u>
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>
Ni	<u>W5: 3.3</u> or <u>36.8</u>	<u>W5: 3.6</u> or <u>71.3</u>
Pb	<u>W5: 1.4</u> or <u>46.0</u>	<u>W5: 1.5</u> or <u>82.6</u>

- $For SS \ \& \ turbidity \ non-compliance \ of \ the \ water \ quality \ limits \ occur \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 27 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бериі	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		-	-	-	-	-	-	-	-	-	3.8		-		-	-	
W1	Sunny	Calm	14:50	Middle	1.1	20.3 20.5	20.4	7.9 7.9	7.9	29.2 29.2	29.2	49.6 48.4	49.0	3.8 3.7	3.8	3.8	10.1 12.3	11.2	11.2	12.3 12.7	12.5	12.5
				Bottom	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-			-	2.8	-	-		-		
W2	Sunny	Calm	14:36	Middle	1.4	17.6 19.1	18.4	7.8 7.8	7.8	32.4 31.1	31.8	36.7 34.6	35.7	2.9 2.7	2.8	2.0	20.6 19.8	20.2	20.2	11.4 11.4	11.4	11.4
				Bottom	,		-	-	-	-	-		-			-	-	-		-	-	
				Surface	1	21.5 21.5	21.5	7.9 7.9	7.9	32.9 33.0	33.0	58.8 61.0	59.9	4.3 4.4	4.4	4.4	8.4 8.2	8.3		8.1 8.0	8.1	
W3	Sunny	Calm	14:28	Middle	-		-	-	-	-	-	-	-	-	-	4.4	-	-	10.2	-	-	8.4
				Bottom	3	20.8 20.9	20.9	7.9 7.9	7.9	32.7 32.5	32.6	41.7 46.7	44.2	3.1 3.5	3.3	3.3	11.8 12.3	12.1		8.7 8.6	8.7	
				Surface	1	25.6 25.6	25.6	7.7 7.7	7.7	30.9 30.9	30.9	102.4 102.5	102.5	7.0 7.0	7.0	7.1	11.7 12.2	12.0		8.8 9.0	8.9	
W4	Sunny	Calm	14:12	Middle	3.5	25.6 25.6	25.6	7.6 7.6	7.6	29.0 29.0	29.0	101.4 101.8	101.6	7.0 7.1	7.1	7.1	12.9 13.6	13.3	12.2	8.7 8.5	8.6	9.6
				Bottom	6	25.6 25.6	25.6	7.6 7.6	7.6	29.0 29.0	29.0	101.1 100.8	101.0	7.0 7.0	7.0	7.0	11.1 11.7	11.4		11.6 11.0	11.3	
_		_		Surface	1	26.2 26.3	26.3	7.9 7.9	7.9	30.0 30.0	30.0	107.4 106.4	106.9	7.3 7.3	7.3	7.2	9.8 9.7	9.8		12.2 12.1	12.2	
W5	Sunny	Calm	14:00	Middle	4	26.2 26.2	26.2	7.9 7.9	7.9	30.4 30.3	30.4	103.7 103.6	103.7	7.1 7.1	7.1	1.2	12.2 12.4	12.3	12.8	10.9 9.9	10.4	10.0
				Bottom	7	25.5 25.5	25.5	7.8 7.8	7.8	31.0 31.0	31.0	101.5 101.2	101.4	7.0 7.0	7.0	7.0	15.9 16.5	16.2		7.5 7.4	7.5	

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 27 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-		·	-		-	-	-	· ·	-			-	-		-		
W1	Sunny	Calm	09:58	Middle	1	28.1 28.1	28.1	7.8 7.8	7.8	31.7 31.9	31.8	54.2 56.4	55.3	3.6 3.7	3.7	3.7	6.5 6.5	6.5	6.5	8.7 9.0	8.9	8.9
				Bottom	-	1 1	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	1 1	-	-	-	2.6	-	-		-	-	
W2	Sunny	Calm	09:47	Middle	1.4	27.9 27.9	27.9	7.8 7.8	7.8	32.8 33.6	33.2	39.2 37.7	38.5	2.6 2.5	2.6	2.0	7.2 7.2	7.2	7.2	7.4 7.5	7.5	7.5
				Bottom	-	1 1	-	-	-	-	-		-	-	-	-	-	-		-	-	
				Surface	1	28.2 28.2	28.2	7.8 7.8	7.8	30.4 30.5	30.5	54.8 55.7	55.3	3.6 3.7	3.7	3.7	7.9 8.1	8.0		7.9 8.0	8.0	
W3	Sunny	Calm	09:41	Middle	-		-	-	-	-	-	-	-	-	-	3.1	-	-	9.8	-	-	9.8
				Bottom	3	27.7 27.7	27.7	7.8 7.8	7.8	34.2 34.2	34.2	34.0 36.0	35.0	2.2 2.3	2.3	2.3	11.5 11.6	11.6		11.4 11.5	11.5	
				Surface	1	26.9 26.9	26.9	7.8 7.8	7.8	33.0 33.1	33.1	94.4 94.1	94.3	6.3 6.2	6.3	6.3	4.8 5.3	5.1		11.9 12.1	12.0	
W4	Sunny	Calm	09:12	Middle	3.5	26.9 26.9	26.9	7.8 7.8	7.8	33.3 33.2	33.3	95.2 95.2	95.2	6.3 6.3	6.3	0.5	7.7 6.6	7.2	7.2	10.8 10.9	10.9	10.1
				Bottom	6	26.8 26.8	26.8	7.8 7.8	7.8	32.6 33.3	33.0	95.6 95.8	95.7	6.4 6.4	6.4	6.4	9.7 9.1	9.4		7.3 7.5	7.4	
				Surface	1	26.9 26.9	26.9	7.8 7.8	7.8	33.0 33.0	33.0	95.5 95.4	95.5	6.3 6.3	6.3	6.4	7.3 7.5	7.4		11.2 11.0	11.1	
W5	Sunny	Calm	09:01	Middle	4	26.9 26.9	26.9	7.8 7.8	7.8	33.2 33.2	33.2	95.9 96.0	96.0	6.4 6.4	6.4	0.4	10.7 10.2	10.5	9.0	5.5 5.4	5.5	9.5
				Bottom	7	26.8 26.8	26.8	7.8 7.8	7.8	33.3 32.6	33.0	96.6 97.0	96.8	6.4 6.5	6.5	6.5	8.9 9.3	9.1		11.9 12.1	12.0	

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 27 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	μ g/L
	Surface		-								1 1	-
W1	Middle	2.54 2.50	2.52	2.52	0.4 0.4	2.9 2.8	6.6 6.7	0.3 0.3	3.0 3.0	0.9 1.0	0.2 0.2	22.1 22.7
	Bottom	1 1	-		1 1	1 1	1 1		1 1	1 1	1 1	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.46 2.49	2.48	2.48	0.4 0.4	2.8 2.9	7.4 7.2	0.3 0.3	2.0 2.0	1.2 1.1	0.2 0.2	20.6 20.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.67 2.66	2.67		0.4 0.4	1.9 1.9	6.0 5.9	<0.2 <0.2	1.6 1.6	0.7 0.7	<0.2 <0.2	21.4 21.0
W3	Middle	-	-	2.60	-		-	-	-	-	-	-
	Bottom	2.59 2.48	2.54		0.3 0.3	1.9 1.9	6.3 6.4	<0.2 <0.2	1.1 1.2	1.1 1.1	<0.2 <0.2	14.2 14.0
	Surface	0.16 0.16	0.16		0.1 0.1	1.7 1.7	6.2 6.3	<0.2 <0.2	1.8 1.8	0.8 0.8	0.2 0.2	10.6 10.4
W4	Middle	0.17 0.17	0.17	0.17	0.3 0.3	1.9 1.8	7.7 7.6	<0.2 <0.2	2.1 2.1	1.2 1.2	<0.2 <0.2	12.9 12.9
	Bottom	0.17 0.17	0.17		0.4 0.4	2.2 2.2	5.2 5.1	0.2 0.2	1.6 1.6	0.8 0.8	<0.2 <0.2	15.5 15.7
	Surface	0.16 0.16	0.16		0.4 0.4	2.5 2.6	5.1 5.1	0.2 0.2	1.2 1.1	0.9 0.9	<0.2 <0.2	21.0 21.4
W5	Middle	0.16 0.16	0.16	0.16	0.5 0.5	2.8 2.7	7.9 7.4	0.2 0.3	2.3 2.2	1.4 1.4	<0.2 <0.2	15.0 14.5
	Bottom	0.16 0.16	0.16		0.4 0.4	2.3 2.2	7.1 6.8	<0.2 <0.2	2.4 2.4	0.6 0.6	<0.2 <0.2	11.3 11.3

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.22 2.28	2.25	2.25	0.2 0.2	1.3 1.4	7.4 7.4	<0.2 <0.2	1.3 1.3	0.9 0.9	<0.2 <0.2	17.8 18.0
	Bottom		-		-	-	-	-	-	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.19 2.11	2.15	2.15	0.3 0.3	2.3 2.3	5.8 5.7	<0.2 <0.2	2.3 2.2	0.6 0.6	<0.2 <0.2	9.1 9.2
	Bottom	-	-		-	-	-		-	-	-	-
	Surface	2.29 2.31	2.30		0.5 0.5	1.9 1.8	5.4 5.3	0.2 0.2	1.7 1.7	0.8 0.8	0.2 0.2	9.3 9.6
W3	Middle	-	-	2.07	-	-		-	-	-	-	-
	Bottom	1.85 1.82	1.84		<0.1 <0.1	2.2 2.2	7.4 7.5	0.2 <0.2	1.8 1.8	1.4 1.3	<0.2 <0.2	17.5 16.5
	Surface	1.41 1.41	1.41		0.1 0.1	2.6 2.6	6.0 6.0	0.2 0.2	1.0 1.0	1.4 1.5	<0.2 <0.2	11.1 11.2
W4	Middle	1.42 1.42	1.42	1.42	<0.1 <0.1	2.1 2.2	5.7 5.5	<0.2 <0.2	1.7 1.7	1.5 1.4	<0.2 <0.2	17.4 17.9
	Bottom	1.43 1.42	1.43		<0.1 <0.1	2.9 2.9	5.3 5.5	<0.2 <0.2	2.9 2.8	0.7 0.7	0.2 0.2	13.9 13.9
	Surface	1.41 1.41	1.41		0.5 0.4	2.6 2.6	5.7 6.0	0.3 0.3	3.0 3.0	0.9 0.9	0.2 0.2	11.2 11.1
W5	Middle	1.41 1.41	1.41	1.41	0.3 0.3	2.0 1.9	7.8 7.7	0.2 0.2	2.5 2.6	1.1 1.1	0.2 0.2	14.6 14.4
	Bottom	1.41 1.41	1.41		0.4 0.4	2.7 2.7	6.8 7.1	0.2 0.2	2.8 2.7	1.5 1.5	<0.2 <0.2	19.7 19.9

Appendix D - Action and Limit Levels for Marine Water Quality on 30 October 2014 (Mid-Ebb Tide)

Parameters	Action Level	Limit Level				
DO in mg/L (Bottom)	0.01	0.01				
	120% of upstream control station's SS at	130% of upstream control station's SS at				
CC in ma/I	the same tide of the same day	the same tide of the same day				
SS in mg/L (Bottom)	<u>W1: 12.1</u> and <u>W2: 13.0</u>	<u>W1: 13.1</u> and <u>W2: 14.0</u>				
(Bottom)	or	or				
	<u>20.4</u>	<u>29.3</u>				
	120% of upstream control station's	130% of upstream control station's				
	turbidity at the same tide of the same day	turbidity at the same tide of the same day				
Turbidity in NTU	<u>W1: 11.9</u> and <u>W2: 16.7</u>	<u>W1: 12.9</u> and <u>W2: 18.1</u>				
	or	or				
	<u>21.9</u>	<u>29.7</u>				
	120% of upstream control station's	130% of upstream control station's				
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the				
	same tide of the same day + 0.9mg/L of	same tide of the same day $+ 0.9 \text{mg/L}$ of				
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate				
mg/L (depth average)	injection	injection				
	<u>W1: 6.61</u> and <u>W2: 6.14</u>	<u>W1: 7.09</u> and <u>W2: 6.58</u>				
	or	or				
	<u>5.9</u>	<u>7.1</u>				
	120% of upstream control station's level	130% of upstream control station's level				
Heavy metals	at the same tide of the same day	at the same tide of the same day				
	or	or				
Cr	W1: 3.3 and W2: 3.4 or 24.0	W1: 3.6 and W2: 3.7 or 40.7				
Cd	<u>W1: 0.6</u> and <u>W2: 0.5</u> or $\underline{0.8}$	W1: 0.7 and W2: 0.5 or <u>1.5</u>				
Cu	W1: 9.4 and W2: 9.1 or 54.8	W1: 10.1 and W2: 9.8 or 95.0				
Zn	W1: 24.9 and W2: 20.8 or 120.0	W1: 27.0 and W2: 22.5 or 150.0				
Ag	W1: 0.2 and W2: 0.2 or <u>0.5</u>	<u>W1: 0.3</u> and <u>W2: 0.3</u> or 0.8				
Hg	W1: 0.4 and W2: 0.4 or 5.1	<u>W1: 0.4</u> and <u>W2: 0.4</u> or <u>8.7</u>				
Ni	W1: 2.6 and W2: 3.5 or 36.8	W1: 2.9 and W2: 3.8 or 71.3				
Pb	<u>W1: 1.9</u> and <u>W2: 1.5</u> or <u>46.0</u>	W1: 2.0 and W2: 1.6 or 82.6				

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

Appendix D - Action and Limit Levels for Marine Water Quality on 30 October 2014 (Mid-Flood Tide)

Parameters	Action Level	Limit Level					
DO in mg/L (Bottom)	0.01	0.01					
	120% of upstream control station's SS at	130% of upstream control station's SS at					
SS in ma/I	the same tide of the same day	the same tide of the same day					
SS in mg/L (Bottom)	<u>W5: 11.8</u>	<u>W5: 12.7</u>					
(Bottom)	or	or					
	<u>20.4</u>	<u>29.3</u>					
	120% of upstream control station's	130% of upstream control station's					
	turbidity at the same tide of the same day	turbidity at the same tide of the same day					
Turbidity in NTU	<u>W5: 6.7</u>	<u>W5: 7.3</u>					
	or	or					
	<u>21.9</u>	<u>29.7</u>					
	120% of upstream control station's	130% of upstream control station's					
	nitrate-nitrogen (depth average) at the	nitrate-nitrogen (depth average) at the					
	same tide of the same day + 0.9mg/L of	same tide of the same day + 0.9mg/L of					
Nitrate-Nitrogen in	anticipated increase due to nitrate	anticipated increase due to nitrate					
mg/L (depth average)	injection	injection					
	<u>W5: 3.23</u>	<u>W5: 3.42</u>					
	or	or					
	<u>5.9</u>	<u>7.1</u>					
Heavy metals	120% of upstream control station's level	130% of upstream control station's level					
Ticavy metais	at the same tide of the same day	at the same tide of the same day					
Cr	<u>W5: 2.4</u> or <u>24.0</u>	<u>W5: 2.6</u> or <u>40.7</u>					
Cd	<u>W5: 0.5</u> or <u><i>0.8</i></u>	<u>W5: 0.6</u> or <u>1.5</u>					
Cu	<u>W5: 8.6</u> or <u>54.8</u>	<u>W5: 9.3</u> or <u>95.0</u>					
Zn	<u>W5: 21.5</u> or <u>120.0</u>	<u>W5: 23.3</u> or <u>150.0</u>					
Ag	<u>W5: 0.2</u> or <u>0.5</u>	<u>W5: 0.3</u> or <u>0.8</u>					
Hg	<u>W5: 0.3</u> or <u>5.1</u>	<u>W5: 0.3</u> or <u>8.7</u>					
Ni	<u>W5: 3.5</u> or <u>36.8</u>	<u>W5: 3.8</u> or <u>71.3</u>					
Pb	<u>W5: 1.2</u> or <u>46.0</u>	<u>W5: 1.3</u> or <u>82.6</u>					

- For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary
- For stations that only the mid depth sample was taken, the results at mid depth will be treated as SS (Bottom)

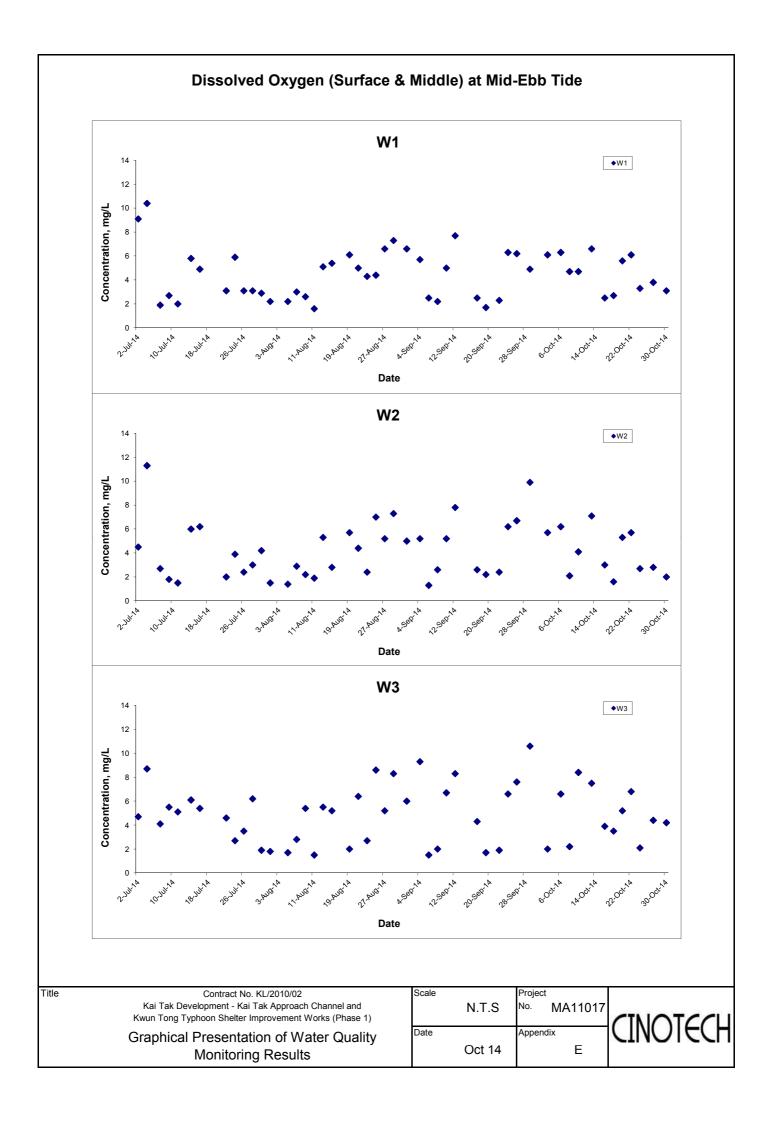
Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 30 October, 2014 (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Turbidity (NTU)			Suspended Solids (mg/L)											
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*									
				Surface	1		-	-	-		-	-	-	-	-	3.1	-	-		-	-										
W1	Sunny	Calm	17:10	Middle	1.2	27.1 27.1	27.1	7.9 7.9	7.9	30.8 30.8	30.8	46.5 46.0	46.3	3.1 3.1	3.1	3.1	9.8 9.9	9.9	9.9	10.1 10.1	10.1	10.1									
				Bottom	1		-	-	-		-	-	-	-	-	1	-	-		-	-										
			16:52	Surface	-		-	-	-	-	-		-	-	-	2.0	-	-		-	-										
W2	Sunny	Calm		16:52	Middle	1.4	26.9 26.8	26.9	7.9 7.9	7.9	32.6 32.7	32.7	30.5 29.2	29.9	2.0 1.9	2.0	2.0	14.3 13.5	13.9	13.9	10.7 10.9	10.8	10.8								
										Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-				
			16:44	Surface	1	27.4 27.4	27.4	7.7 7.8	7.8	30.6 30.5	30.6	63.1 62.8	63.0	4.2 4.2	4.2	4.2	6.4 6.3	6.4		8.1 8.2	8.2										
W3	Sunny	Calm		Middle			-		-		-		-	-	-	7.2	-		4.7	-	-	6.7									
				Bottom	3	26.6 26.6	26.6	7.8 7.9	7.9	33.3 33.3	33.3	38.3 33.7	36.0	2.6 2.2	2.4	2.4	3.1 2.7	2.9		5.2 5.1	5.2										
					Surface	1	26.8 26.6	26.7	7.6 7.7	7.7	30.8 31.5	31.2	94.7 94.1	94.4	6.4 6.3	6.4	6.2	3.2 3.0	3.1		8.4 8.5	8.5									
W4	Sunny	Calm	Calm	Calm	Calm	16:27	16:27	16:27	16:27	16:27	16:27	16:27	Middle	4	26.1 26.1	26.1	7.6 7.7	7.7	33.2 33.2	33.2	87.0 87.3	87.2	5.8 5.9	5.9	0.2	4.3 4.9	4.6	4.7	4.7 4.5	4.6	8.0
												Bottom	7	26.1 26.1	26.1	7.7 7.7	7.7	33.3 33.3	33.3	86.5 86.2	86.4	5.8 5.8	5.8	5.8	6.5 6.3	6.4		10.8 10.8	10.8		
				Surface	1	26.2 26.3	26.3	7.8 7.8	7.8	32.4 32.4	32.4	92.7 89.1	90.9	6.2 6.0	6.1	6.1	2.9 3.1	3.0		4.5 4.6	4.6										
W5	Sunny	Calm	16:12	Middle	4	26.2 26.1	26.2	7.8 7.8	7.8	32.6 32.8	32.7	90.8 89.6	90.2	6.1 6.0	6.1	0.1	2.6 2.5	2.6	4.1	4.7 4.8	4.8	6.6									
i				Bottom	7	26.1 26.1	26.1	7.8 7.8	7.8	32.8 32.8	32.8	89.7 89.1	89.4	6.0 6.0	6.0	6.0	6.7 6.6	6.7		10.5 10.3	10.4										

Contract No. KL/2010/02

Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Water Quality Monitoring Results on 30 October, 2014 (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tem	p (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity (NT	U)	Susper	nded Solids	(mg/L)								
Location	Condition	Condition*	Time	Deptil	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*								
				Surface	-		-	-			-	-	-	-			-	-		-	-									
W1	Sunny	Calm	10:38	Middle	0.9	27.6 27.5	27.6	8.1 8.1	8.1	17.3 17.5	17.4	42.4 40.9	41.7	3.0 2.9	3.0	3.0	5.9 5.5	5.7	5.7	5.9 5.8	5.9	5.9								
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-									
			11:36		Surface	-	1 1	-	-	-	1 1	-	1 1	-	-	-	2.5	-	-		-	-								
W2	Sunny	Calm		Middle	1.4	27.6 27.6	27.6	8.1 8.1	8.1	28.8 29.2	29.0	36.9 37.4	37.2	2.5 2.5	2.5	2.0	4.5 4.5	4.5	4.5	6.5 6.2	6.4	6.4								
							Bottom	-		-	-	-	1 1	-		-	-	-	-	-	-		-	-						
			11:27		Surface	1	27.3 27.4	27.4	8.2 8.2	8.2	27.3 27.9	27.6	44.8 43.1	44.0	3.1 2.9	3.0	3.0	7.1 6.3	6.7		6.6 6.5	6.6								
W3	Sunny	Calm		Middle	,		-	-	-		-		-	-	-	3.0	-		4.8	-	-	7.7								
				Bottom	3	26.6 26.6	26.6	8.1 8.1	8.1	32.9 32.9	32.9	45.4 43.5	44.5	3.0 2.9	3.0	3.0	2.8 2.7	2.8		8.9 8.7	8.8									
			11:10	11:10	11:10	11:10	Surface	1	26.2 26.2	26.2	7.9 7.9	7.9	32.5 32.5	32.5	85.5 84.8	85.2	5.8 5.7	5.8	5.9	3.4 3.6	3.5		7.5 7.3	7.4						
W4	Sunny	Calm					11:10	11:10	11:10	11:10	11:10	Middle	3	26.1 26.2	26.2	7.9 7.9	7.9	32.6 32.6	32.6	87.0 86.7	86.9	5.9 5.8	5.9	5.5	4.1 4.3	4.2	4.2	7.2 7.3	7.3	7.1
																	Bottom	5	26.1 26.1	26.1	7.9 7.8	7.9	32.6 32.6	32.6	86.5 85.9	86.2	5.8 5.8	5.8	5.8	4.9 5.0
		-		Surface	1	26.2 26.2	26.2	7.9 7.9	7.9	32.5 32.5	32.5	84.2 83.2	83.7	5.7 5.6	5.7	5.7	3.6 3.6	3.6		7.6 7.5	7.6									
W5	Sunny	Calm	10:56	Middle	4.5	26.1 26.1	26.1	7.9 7.9	7.9	32.5 32.5	32.5	84.5 84.5	84.5	5.7 5.7	5.7	5.7	5.6 6.8	6.2	5.6	8.1 7.9	8.0	8.5								
				Bottom	8	26.1 26.1	26.1	8.0 8.0	8.0	32.4 32.4	32.4	87.0 86.9	87.0	5.9 5.9	5.9	5.9	6.7 7.0	6.9		9.8 9.7	9.8									


Kai Tak Development – Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Metal Results on 30 October 2014

Mid-Ebb Tide

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Берит	Value	average	Average	μg/L	μ g/L	μg/L	μg/L	μ g/L	μg/L	μ g/L	μ g /L
	Surface		-				1 1			-	1 1	-
W1	Middle	4.80 4.72	4.76	4.76	0.5 0.5	2.8 2.7	7.7 7.9	0.3 0.3	2.2 2.2	1.6 1.5	0.2 0.2	20.7 20.8
	Bottom	-	-		-		-	-	-	-		-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	4.35 4.39	4.37	4.37	0.4 0.4	2.9 2.8	7.4 7.7	0.3 0.3	3.0 2.9	1.2 1.3	0.2 0.2	17.3 17.3
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	1.09 1.12	1.11		<0.1 <0.1	2.0 1.9	5.9 5.8	0.2 <0.2	1.5 1.6	0.7 0.7	0.2 0.2	15.6 15.3
W3	Middle	-	-	0.63	-		-	-	-	-		-
	Bottom	0.16 0.16	0.16		0.2 0.2	1.8 1.8	7.8 7.6	<0.2 <0.2	1.7 1.6	1.5 1.5	<0.2 <0.2	16.6 16.3
	Surface	0.60 0.58	0.59		0.1 0.1	2.2 2.2	5.8 5.8	<0.2 <0.2	1.9 1.9	0.9 1.0	<0.2 <0.2	14.5 13.7
W4	Middle	0.15 0.15	0.15	0.27	0.1 0.1	1.0 1.1	5.0 4.8	0.2 0.2	1.9 1.8	0.8 0.8	<0.2 <0.2	8.6 8.7
	Bottom	0.08 0.08	0.08		0.2 0.2	2.1 2.1	5.2 5.3	0.3 0.3	1.4 1.4	0.8 0.8	<0.2 <0.2	22.5 22.1
	Surface	0.14 0.14	0.14		0.5 0.5	1.1 1.1	5.7 5.7	0.2 0.2	1.7 1.7	1.6 1.5	<0.2 <0.2	11.4 11.1
W5	Middle	0.15 0.15	0.15	0.12	0.2 0.2	3.0 3.1	6.7 6.8	0.2 0.2	1.8 1.8	1.0 0.9	0.2 0.2	18.4 18.1
	Bottom	0.08 0.08	0.08		0.2 0.2	1.6 1.6	7.4 7.2	0.2 0.2	2.6 2.6	1.1 1.0	<0.2 <0.2	14.5 14.7

Location	Depth	Nitrate-N	litrogen,mg	NO3-N/L	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Silver	Zinc
Location	Depth	Value	average	Average	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Surface	-	-		-	-	-	-	-	-	-	-
W1	Middle	2.68 2.62	2.65	2.65	0.3 0.3	2.0 2.0	6.1 6.2	0.2 0.2	2.9 2.8	0.7 0.7	<0.2 <0.2	20.5 20.7
	Bottom	-	-		-	-	1 1	-	1 1	-	-	-
	Surface	-	-		-	-	-	-	-	-	-	-
W2	Middle	2.75 2.73	2.74	2.74	<0.1 <0.1	2.1 2.0	5.1 4.9	0.2 0.2	1.5 1.5	1.1 1.1	<0.2 <0.2	17.2 17.2
	Bottom	-	-		-	-	-	-	-	-	-	-
	Surface	2.97 2.97	2.97		0.2 0.2	1.9 1.9	5.9 5.7	<0.2 <0.2	2.6 2.5	1.0 1.0	<0.2 <0.2	14.4 14.7
W3	Middle	-	-	3.01	-	-		-	-	-	-	-
	Bottom	3.07 3.01	3.04		0.1 0.1	2.5 2.6	6.4 6.2	<0.2 <0.2	1.1 1.1	1.2 1.2	<0.2 <0.2	20.9 20.2
	Surface	1.95 1.95	1.95		0.3 0.3	2.4 2.4	6.7 6.4	<0.2 <0.2	1.7 1.8	1.3 1.3	<0.2 <0.2	9.3 9.6
W4	Middle	1.96 1.96	1.96	1.96	0.2 0.2	1.2 1.2	6.4 6.5	<0.2 <0.2	2.1 2.0	0.6 0.6	<0.2 <0.2	18.0 18.4
	Bottom	1.97 1.97	1.97		0.3 0.3	1.0 1.0	5.6 5.5	<0.2 <0.2	1.2 1.2	0.9 0.9	<0.2 <0.2	14.8 14.5
	Surface	1.94 1.93	1.94		0.5 0.5	2.3 2.2	7.4 7.5	0.2 0.2	3.1 3.2	0.6 0.6	0.2 0.2	10.2 10.3
W5	Middle	1.94 1.94	1.94	1.94	0.3 0.3	2.5 2.5	8.0 7.8	0.2 0.2	2.6 2.6	1.4 1.4	<0.2 <0.2	22.8 22.6
	Bottom	1.94 1.94	1.94		0.5 0.5	1.3 1.2	6.2 6.1	0.3 0.3	3.0 3.0	1.0	0.2 0.2	21.1

APPENDIX E GRAPHICAL PRESENTATION FOR WATER QUALITY MONITORING RESULTS

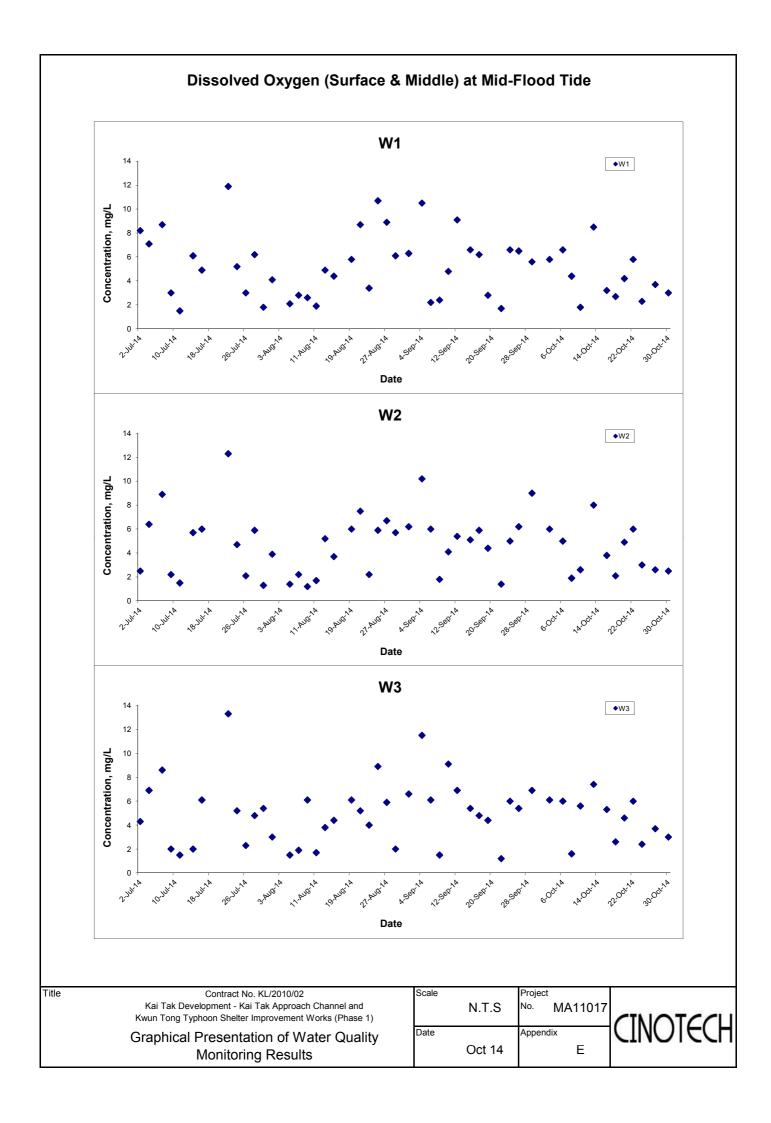
Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide

Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality

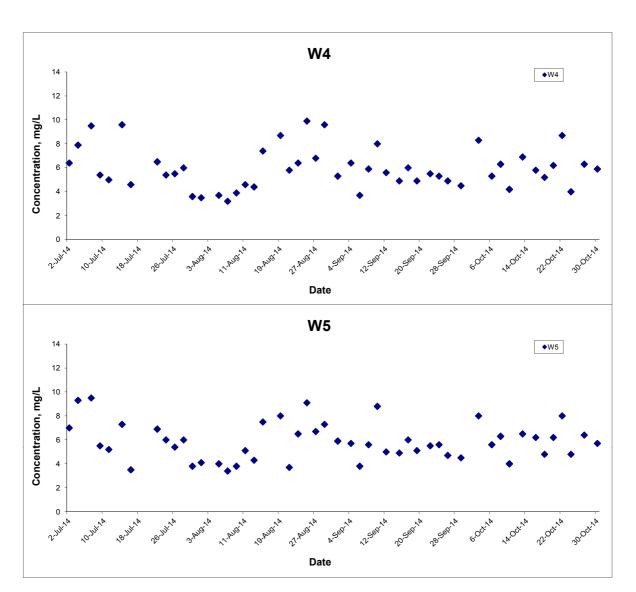
Monitoring Results

у

Scale

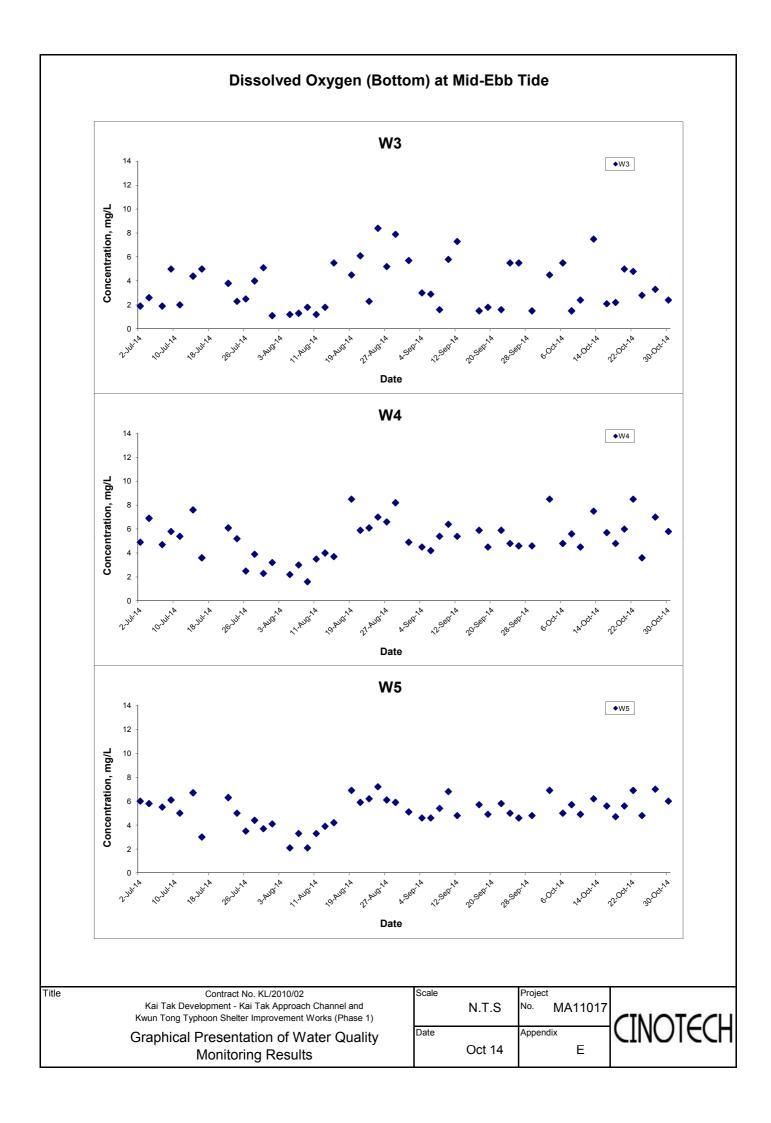

Date

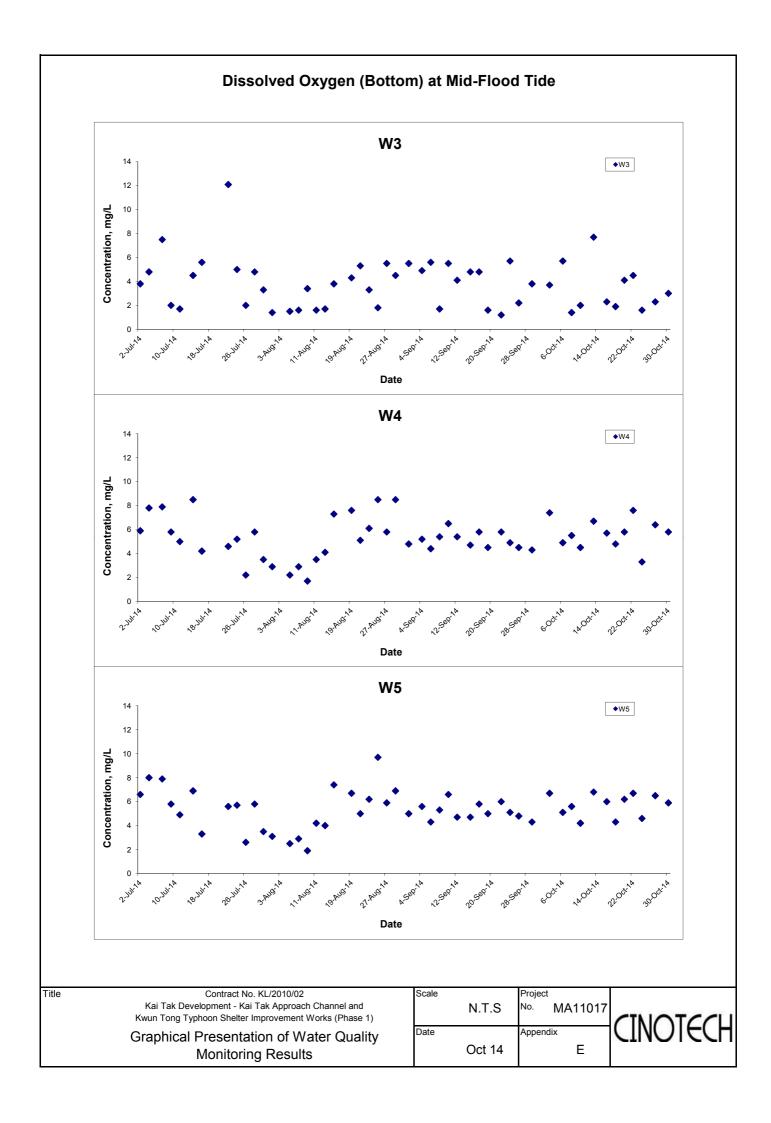
 $\mathsf{N.T.S}$

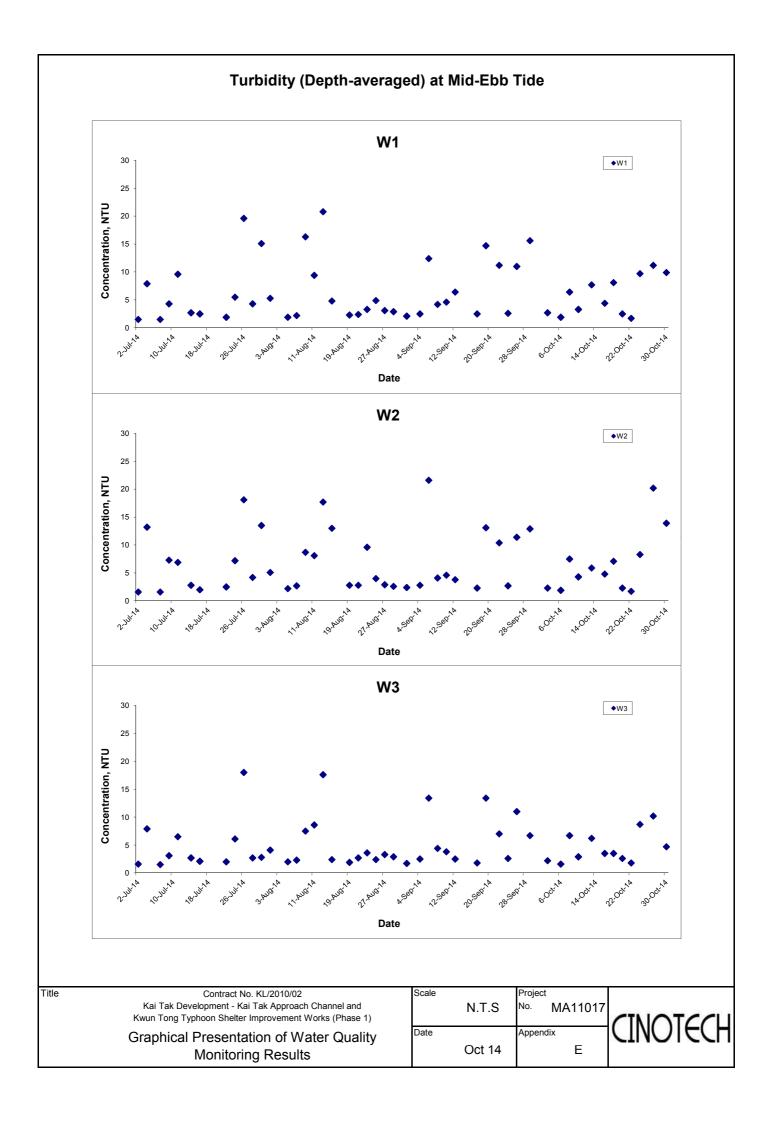

Oct 14

Project No. MA11017 Appendix

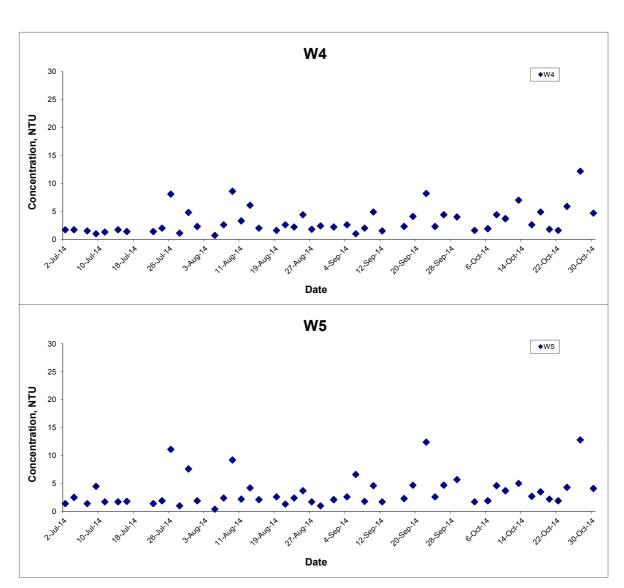
Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

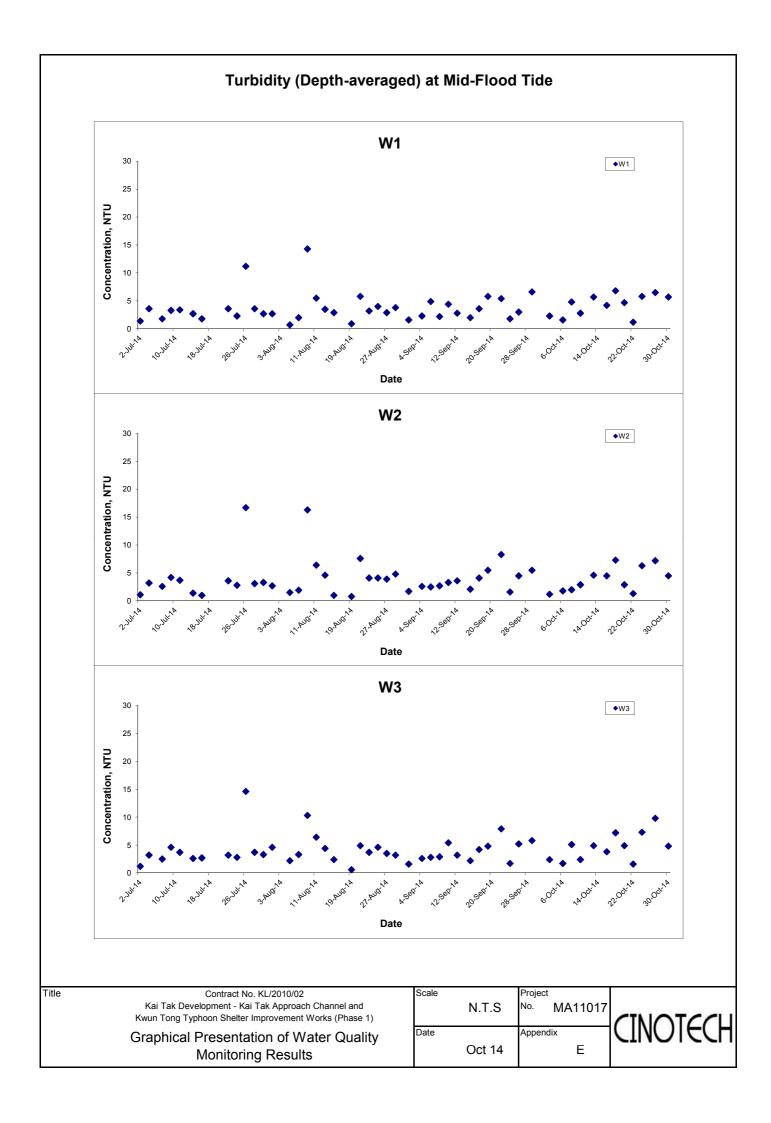


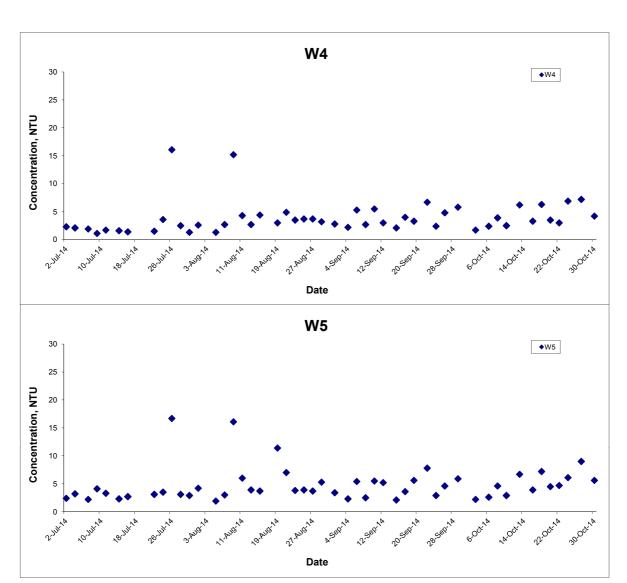

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality


Monitoring Results

Title




Turbidity (Depth-averaged) at Mid-Ebb Tide

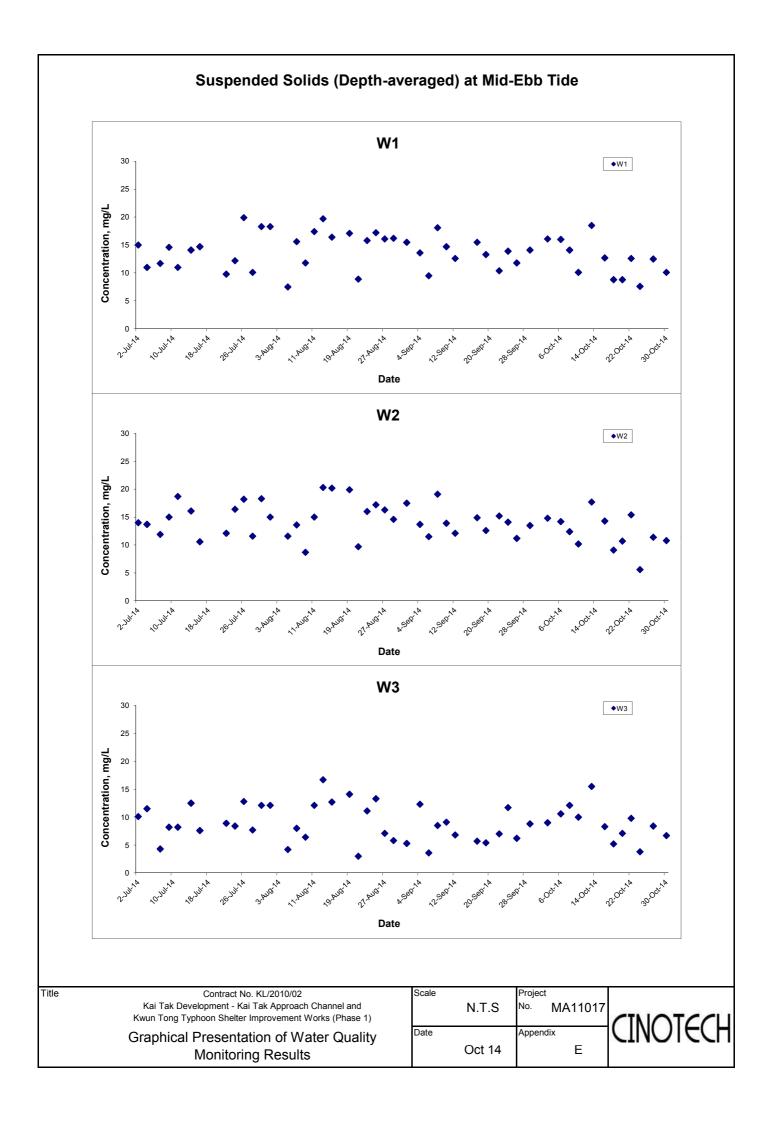

Title Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

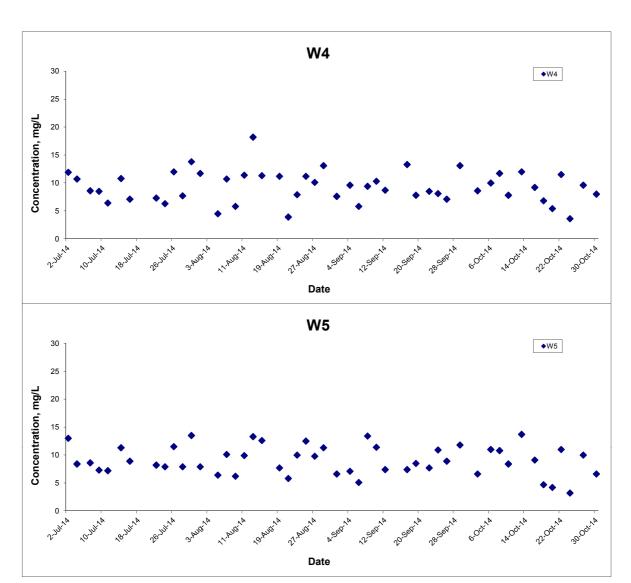
Turbidity (Depth-averaged) at Mid-Flood Tide

Title

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

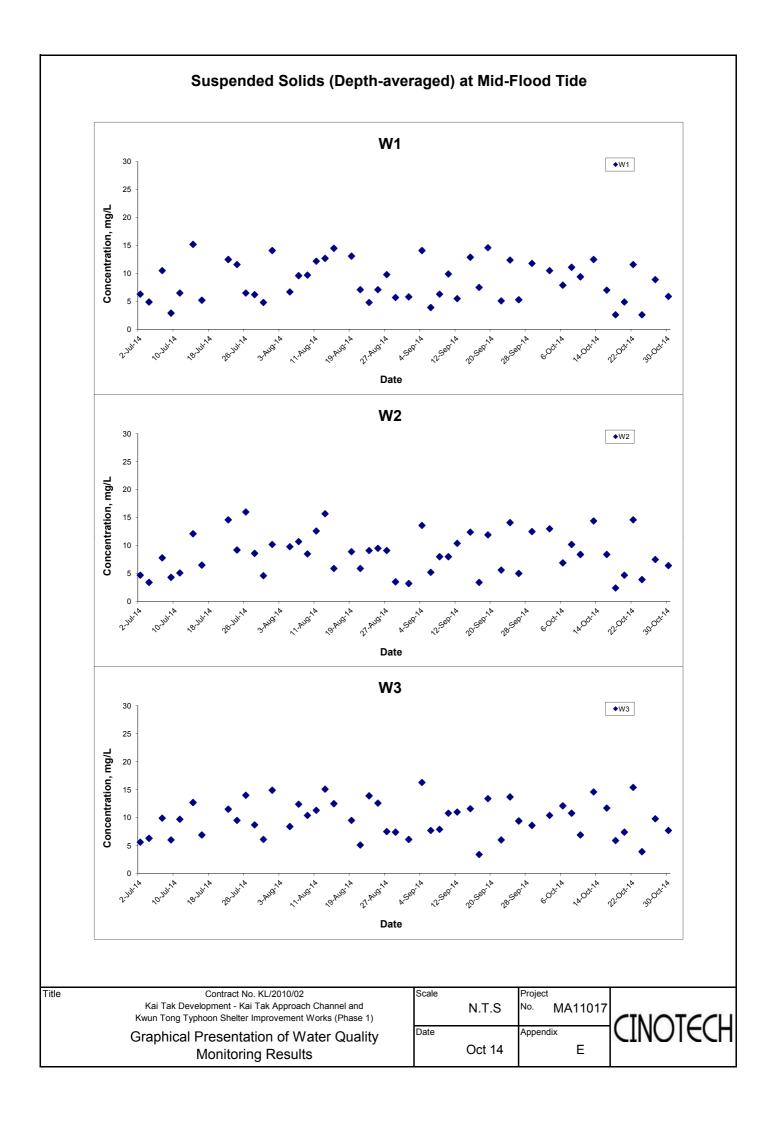

Graphical Presentation of Water Quality
Monitoring Results

 N.T.S
 Project No.
 MA11017

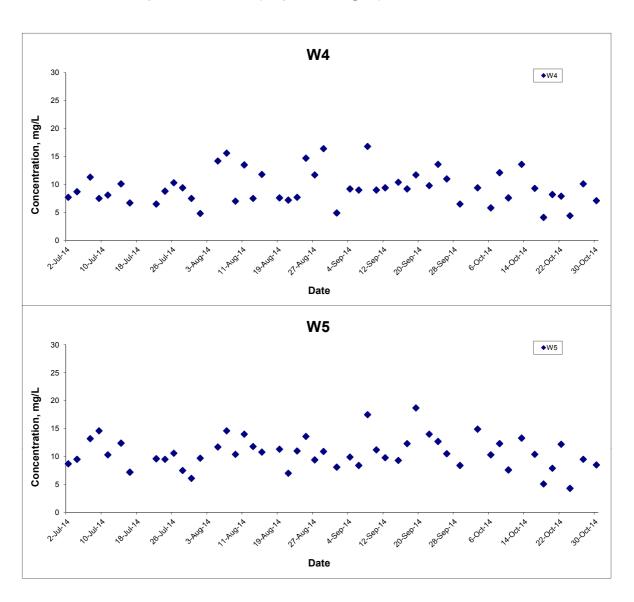

 Date
 Appendix

 Oct 14
 E

Suspended Solids (Depth-averaged) at Mid-Ebb Tide

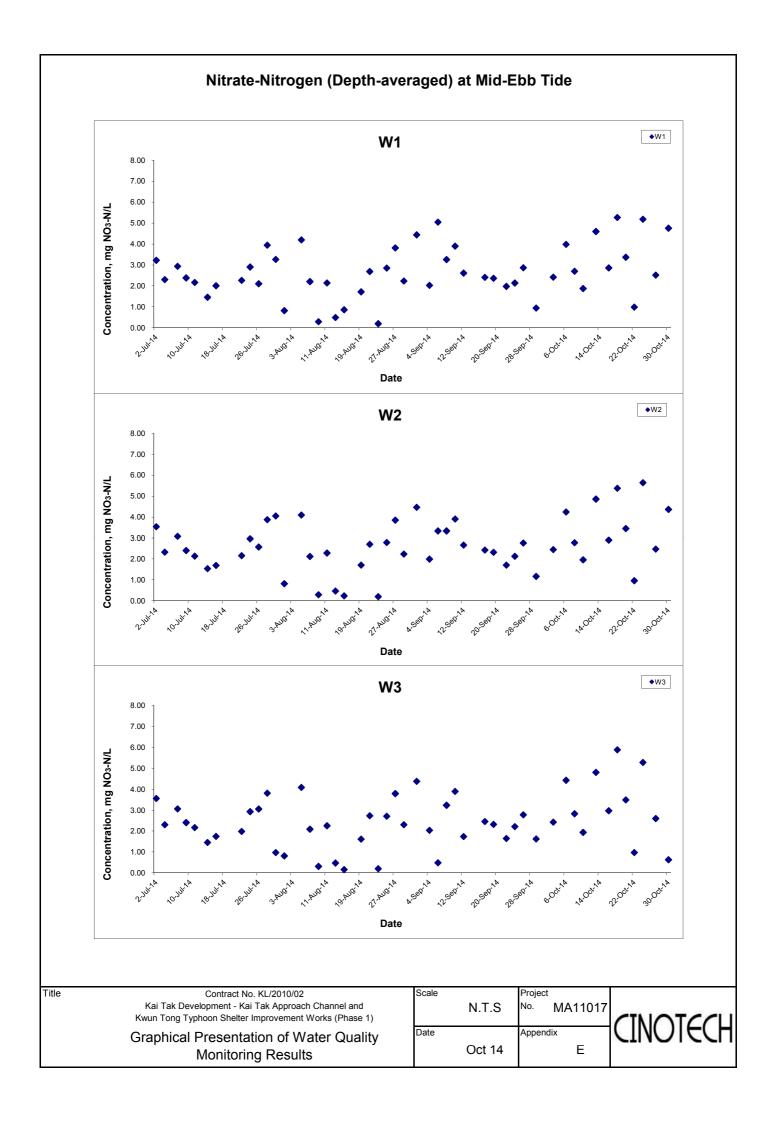


Title

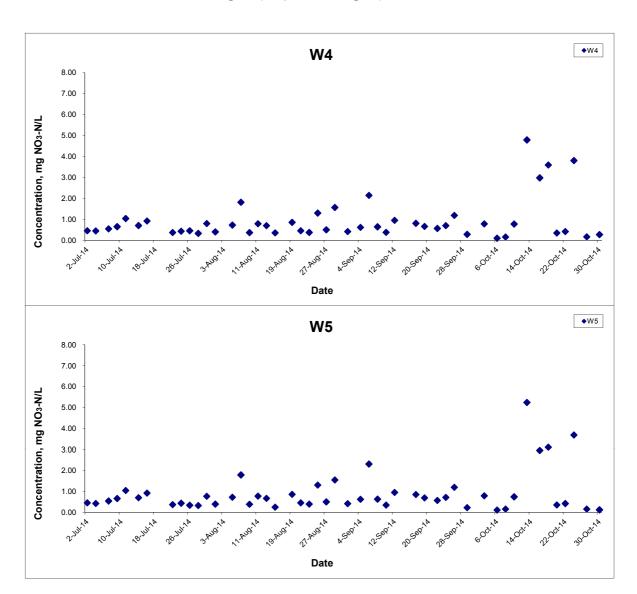

Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

Suspended Solids (Depth-averaged) at Mid-Flood Tide

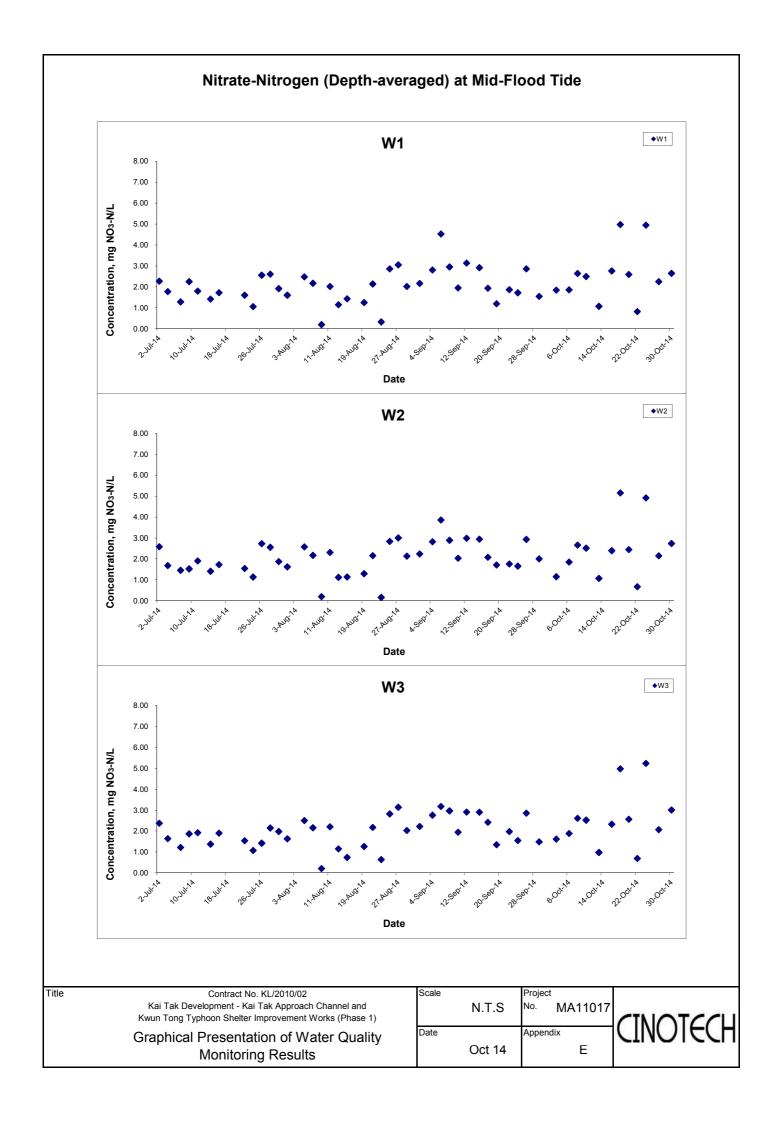


Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality

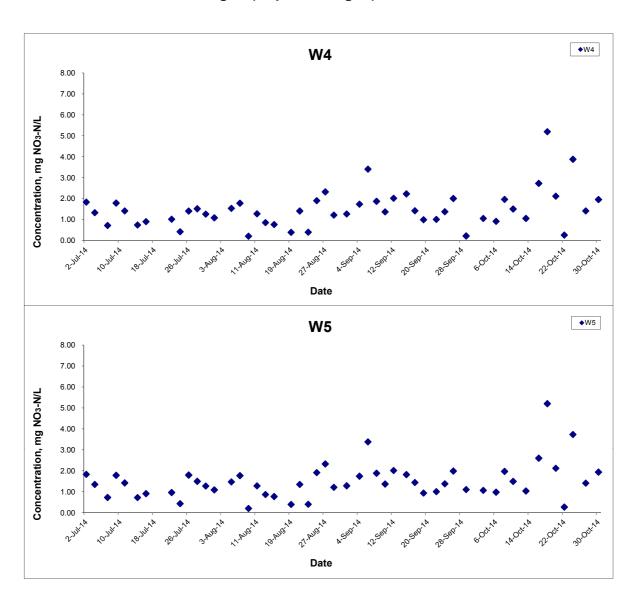

Title

Presentation of Water Quality
Monitoring Results

Nitrate-Nitrogen (Depth-averaged) at Mid-Ebb Tide

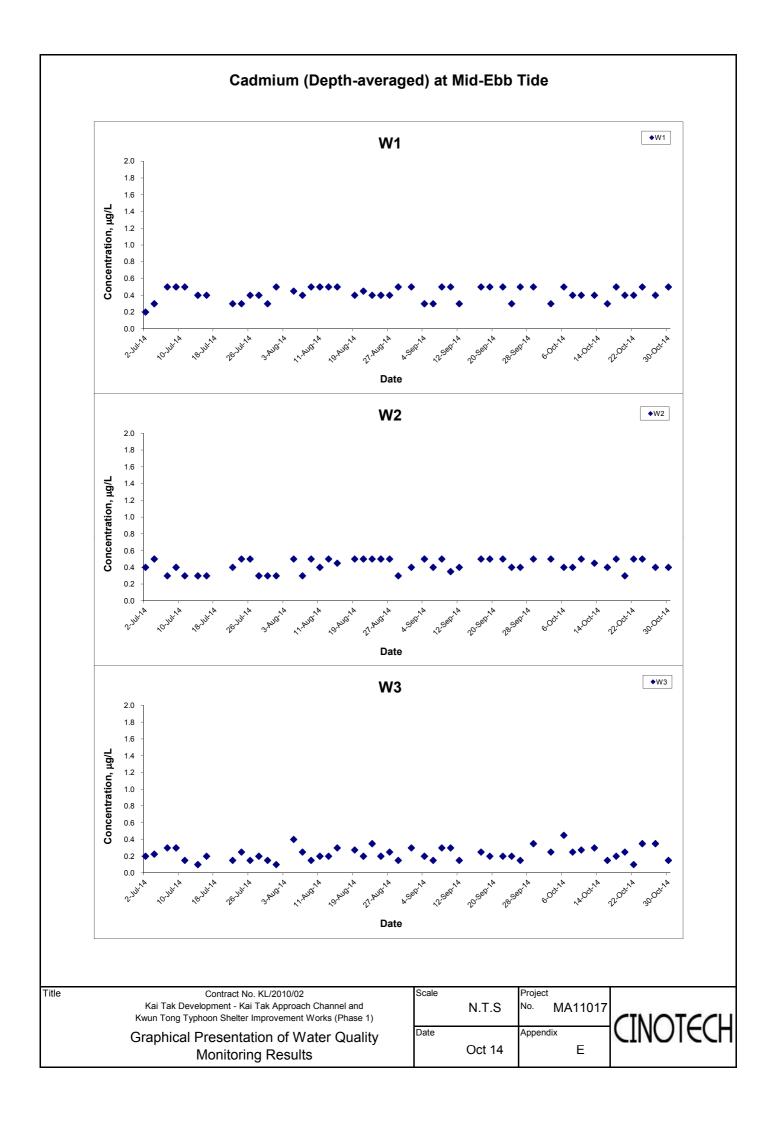


Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

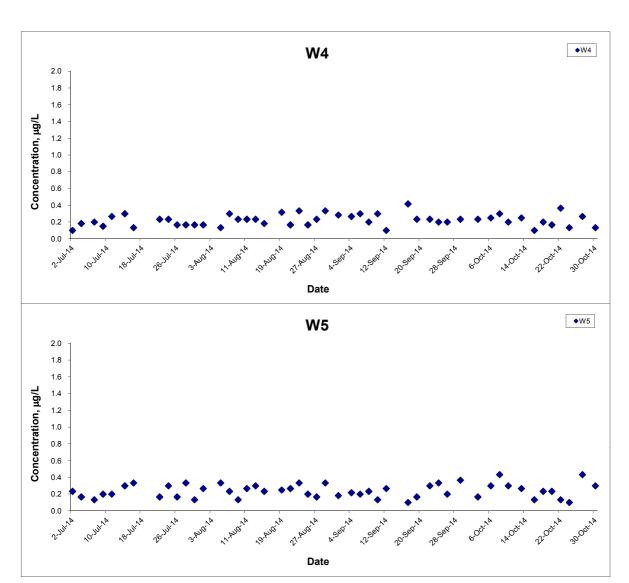

Title

Graphical Presentation of Water Quality
Monitoring Results

Nitrate-Nitrogen (Depth-averaged) at Mid-Flood Tide

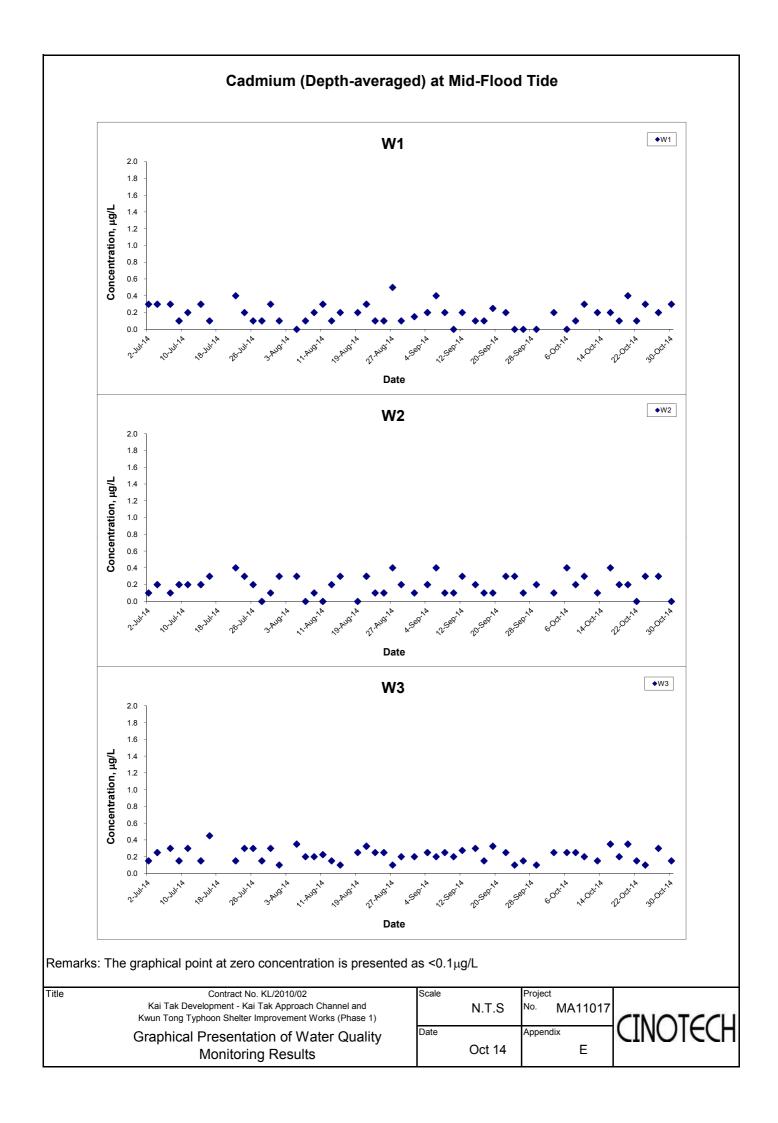


Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

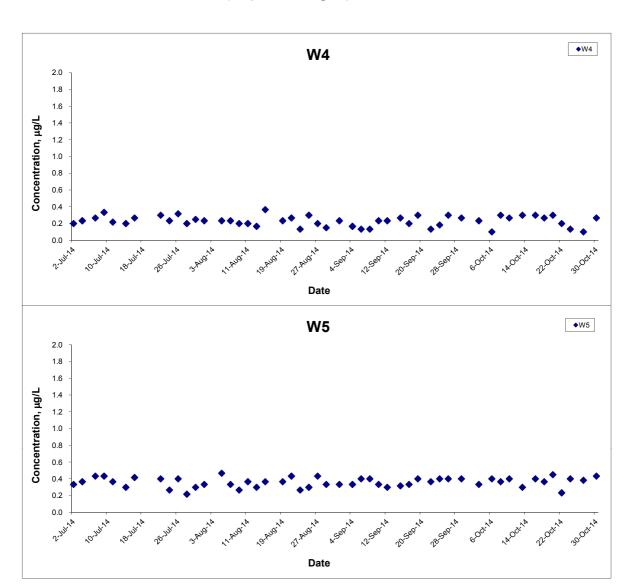

Title

Graphical Presentation of Water Quality Monitoring Results

Cadmium (Depth-averaged) at Mid-Ebb Tide

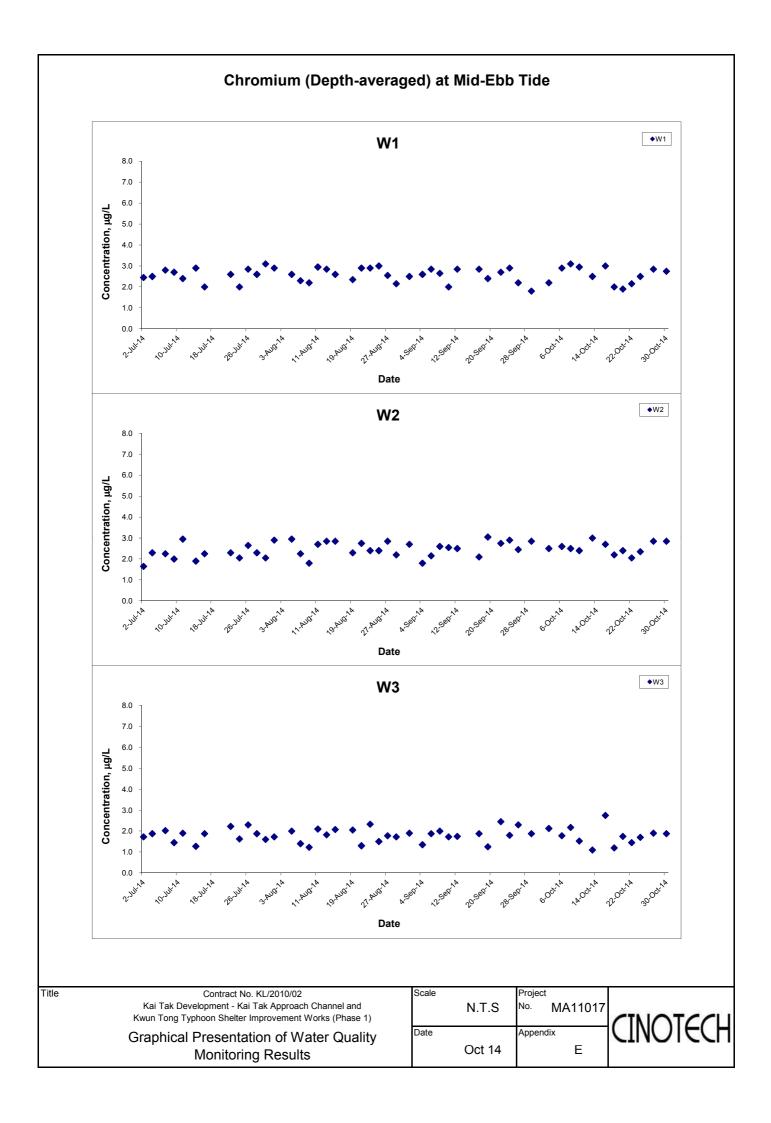


Title


Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

Cadmium (Depth-averaged) at Mid-Flood Tide

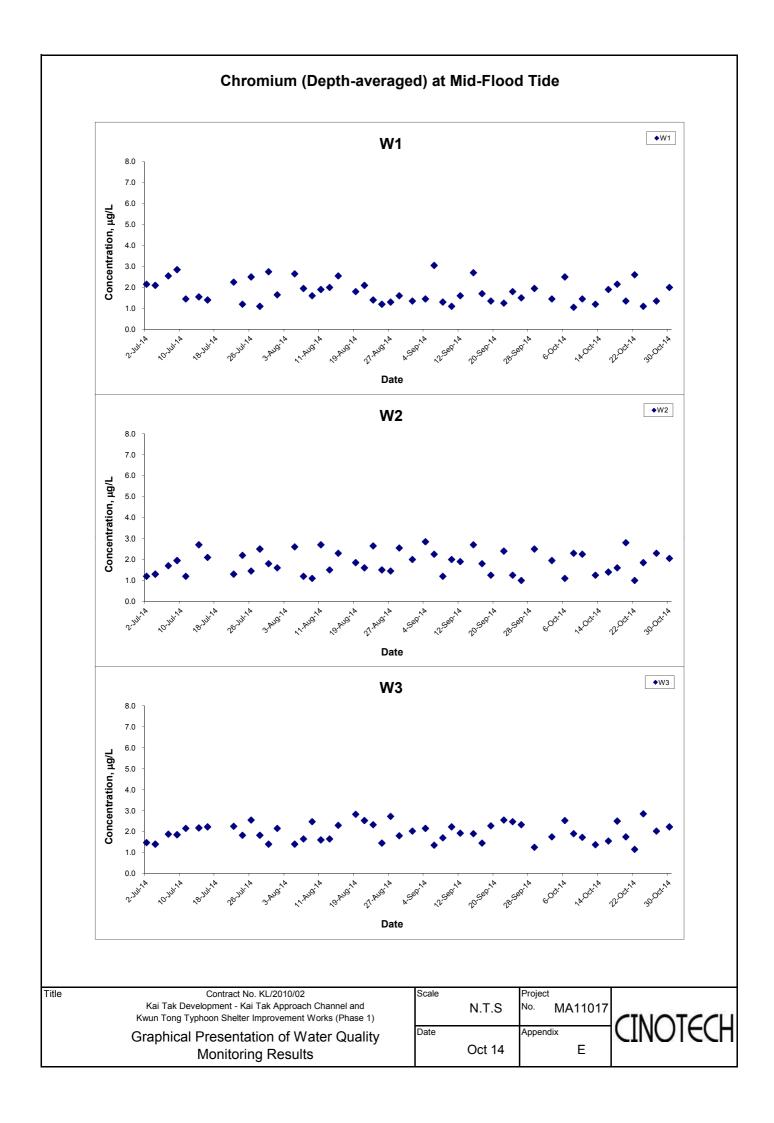


Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

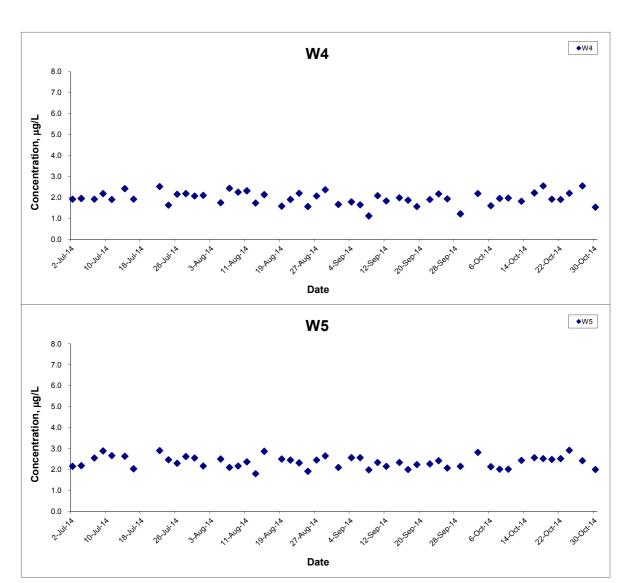
Title

Graphical Presentation of Water Quality
Monitoring Results

Chromium (Depth-averaged) at Mid-Ebb Tide

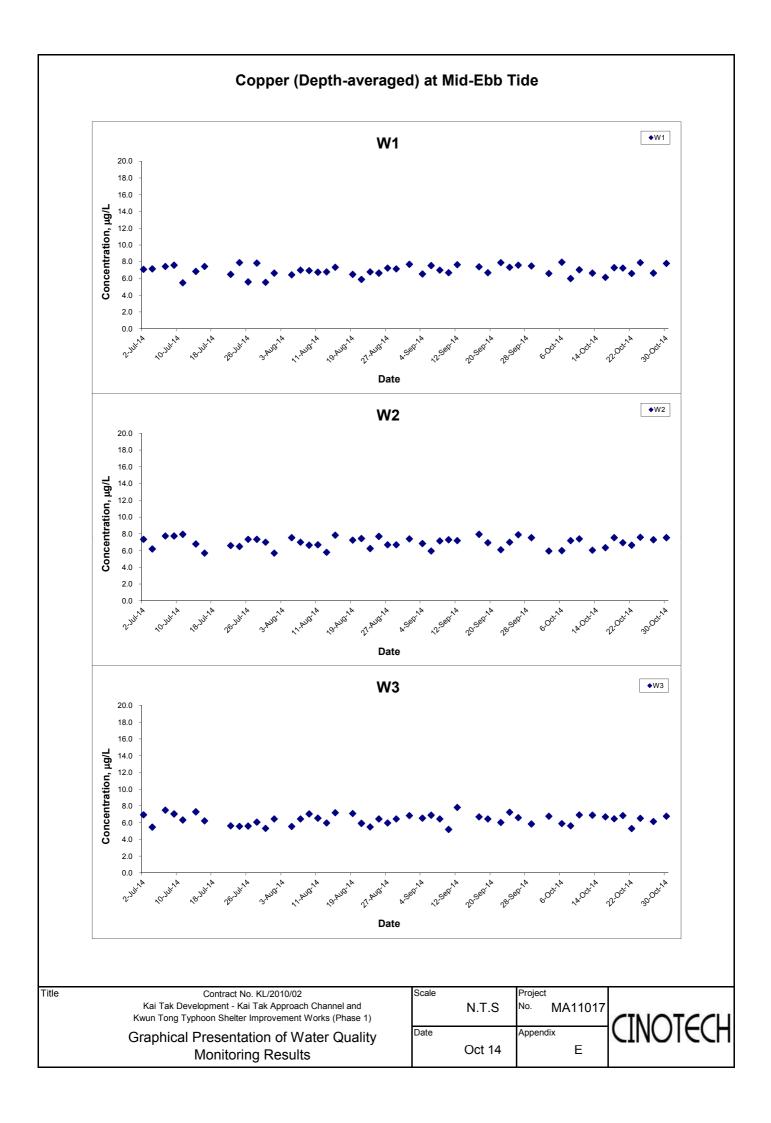


Title

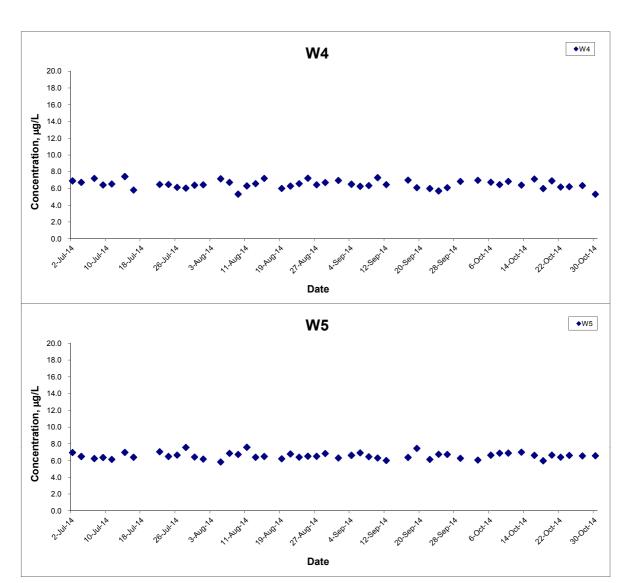

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

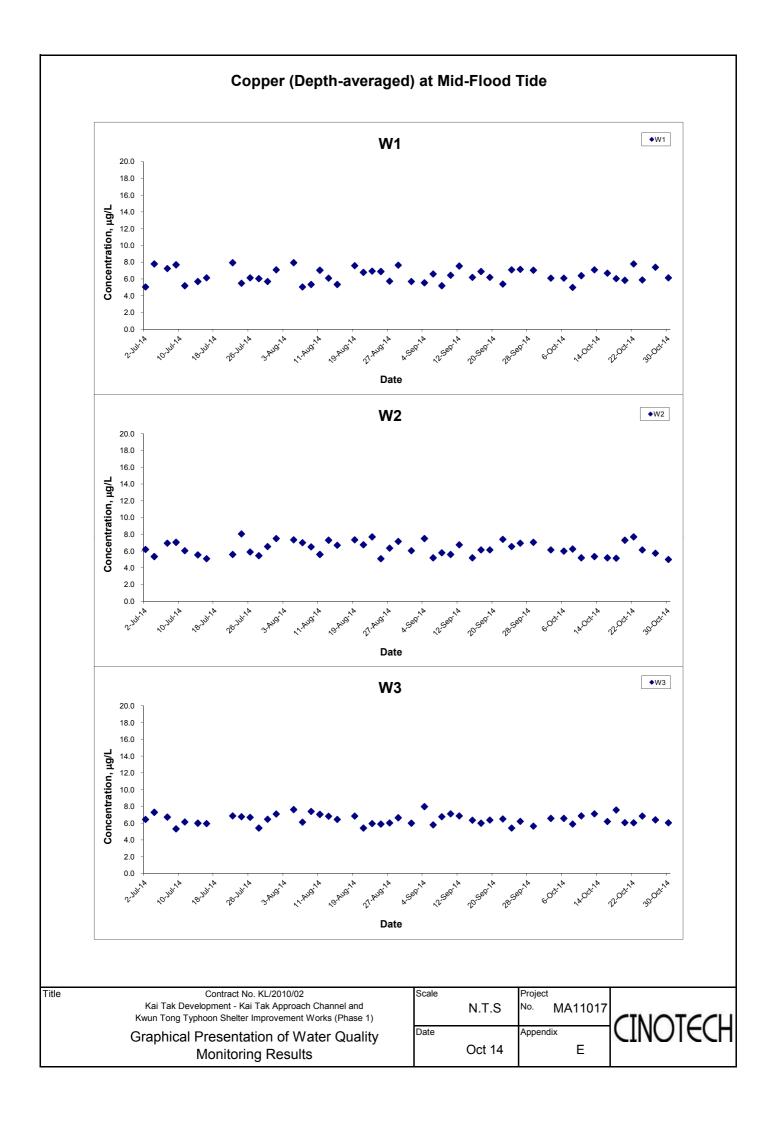
Chromium (Depth-averaged) at Mid-Flood Tide

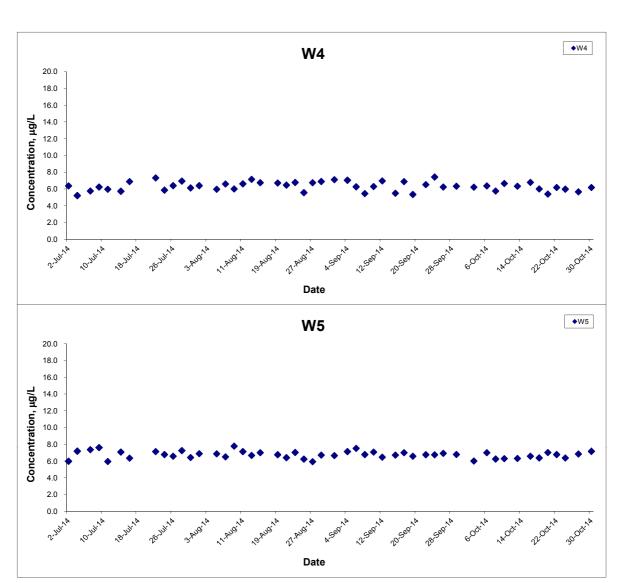


Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

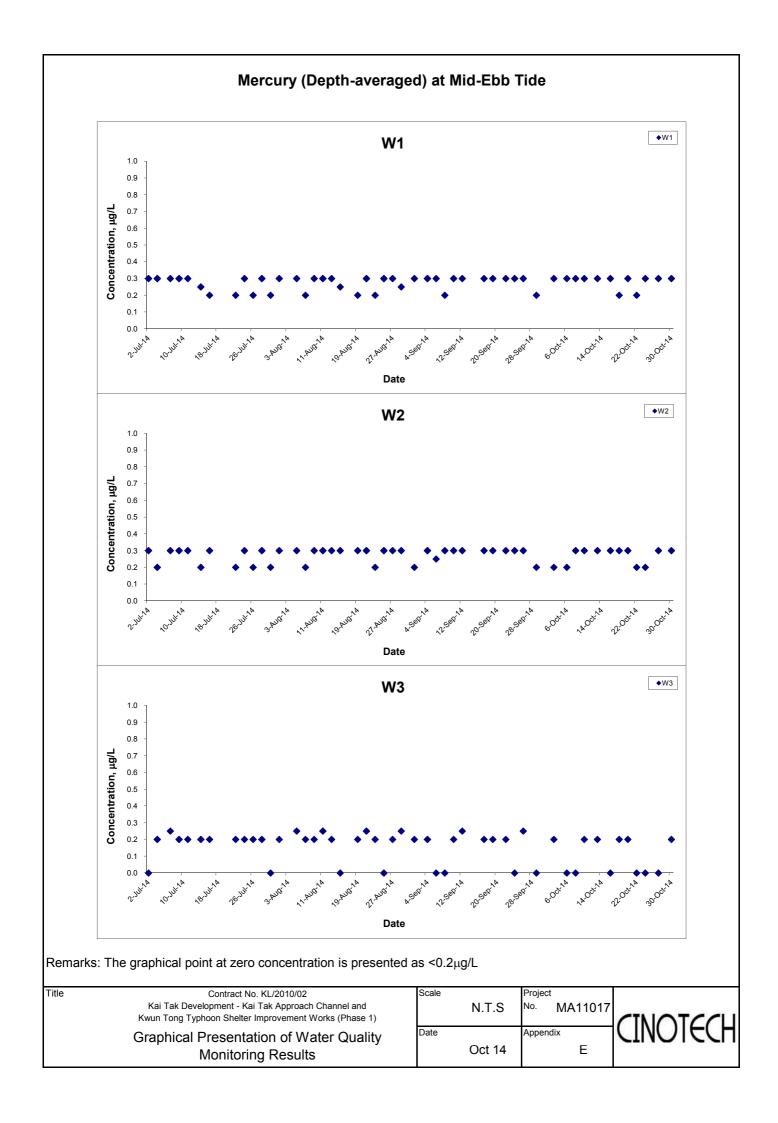

Title

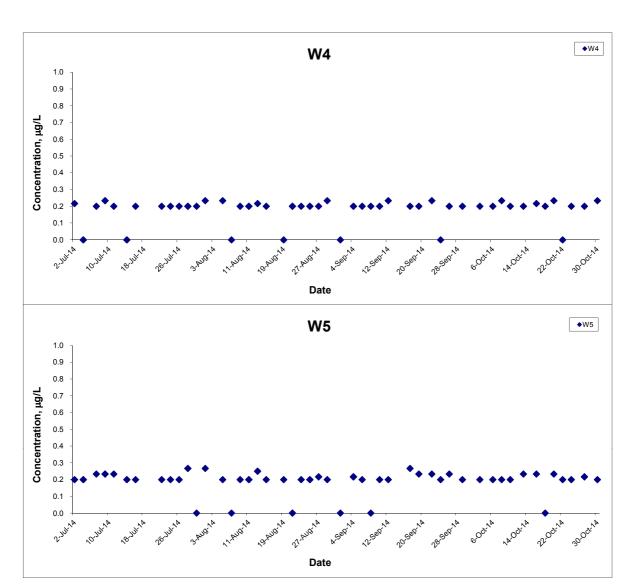
Graphical Presentation of Water Quality
Monitoring Results


Copper (Depth-averaged) at Mid-Ebb Tide


Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

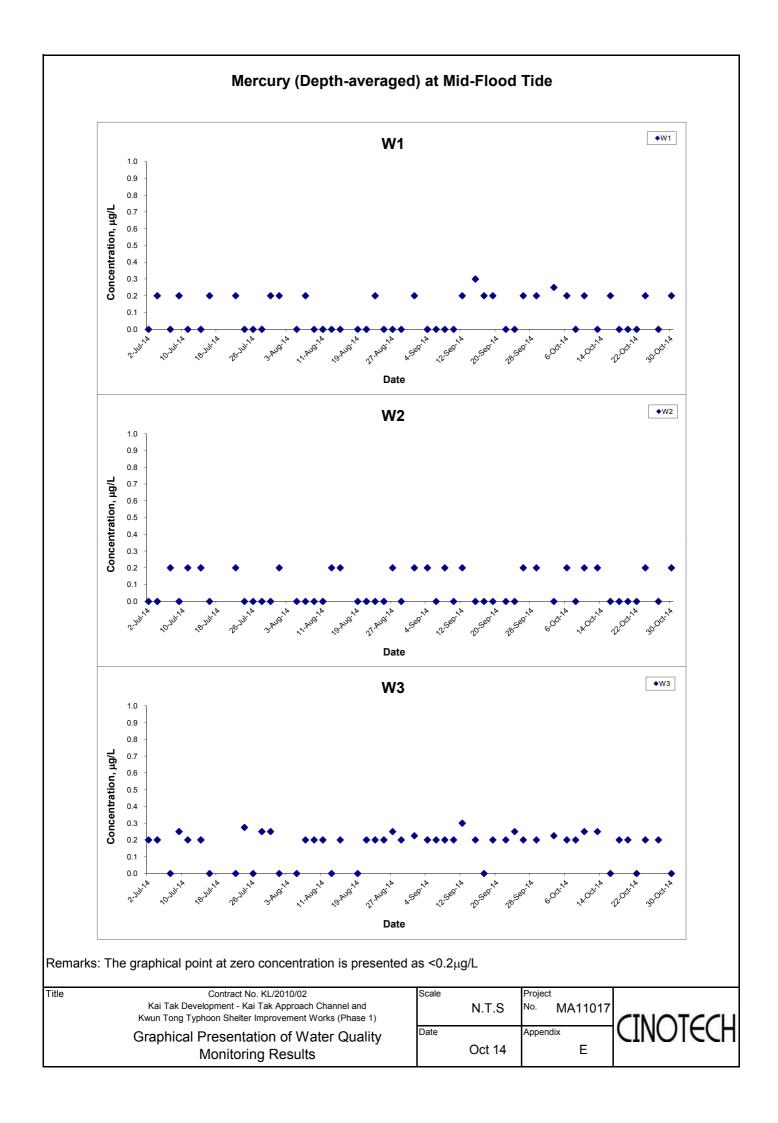
Graphical Presentation of Water Quality
Monitoring Results


Copper (Depth-averaged) at Mid-Flood Tide

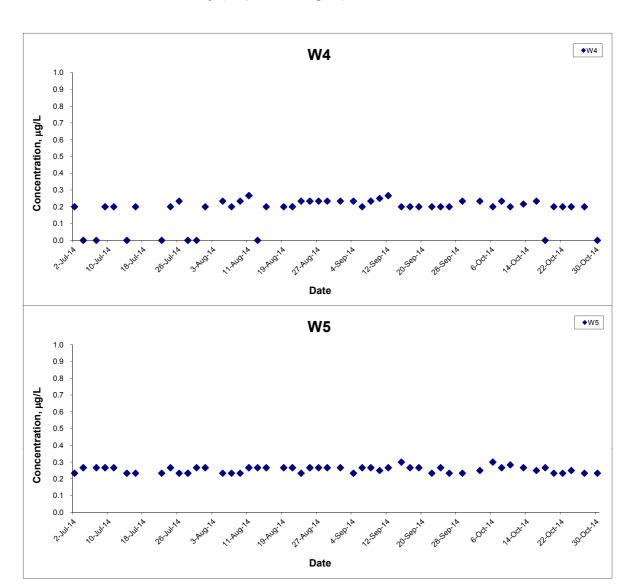

Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

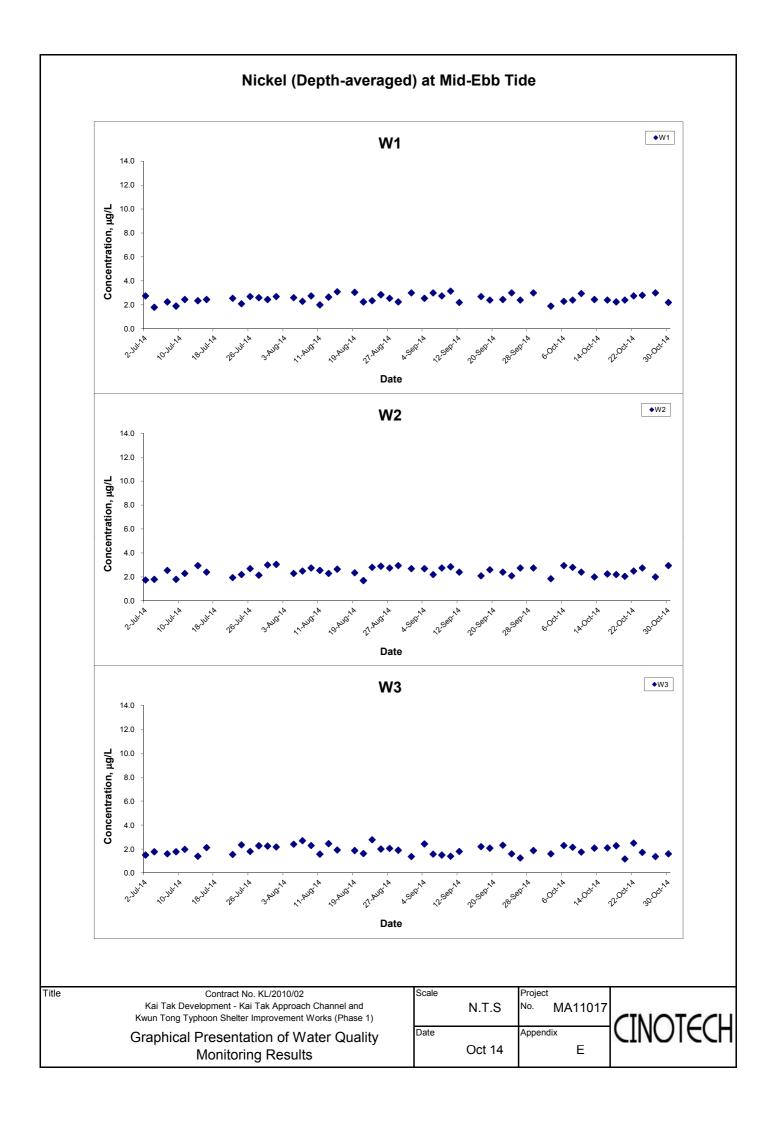
Mercury (Depth-averaged) at Mid-Ebb Tide

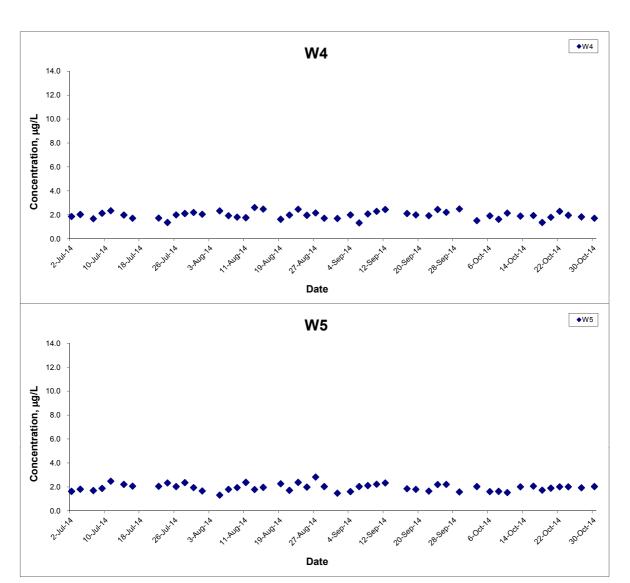

Remarks: The graphical point at zero concentration is presented as $<0.2\mu g/L$

Monitoring Results


Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality

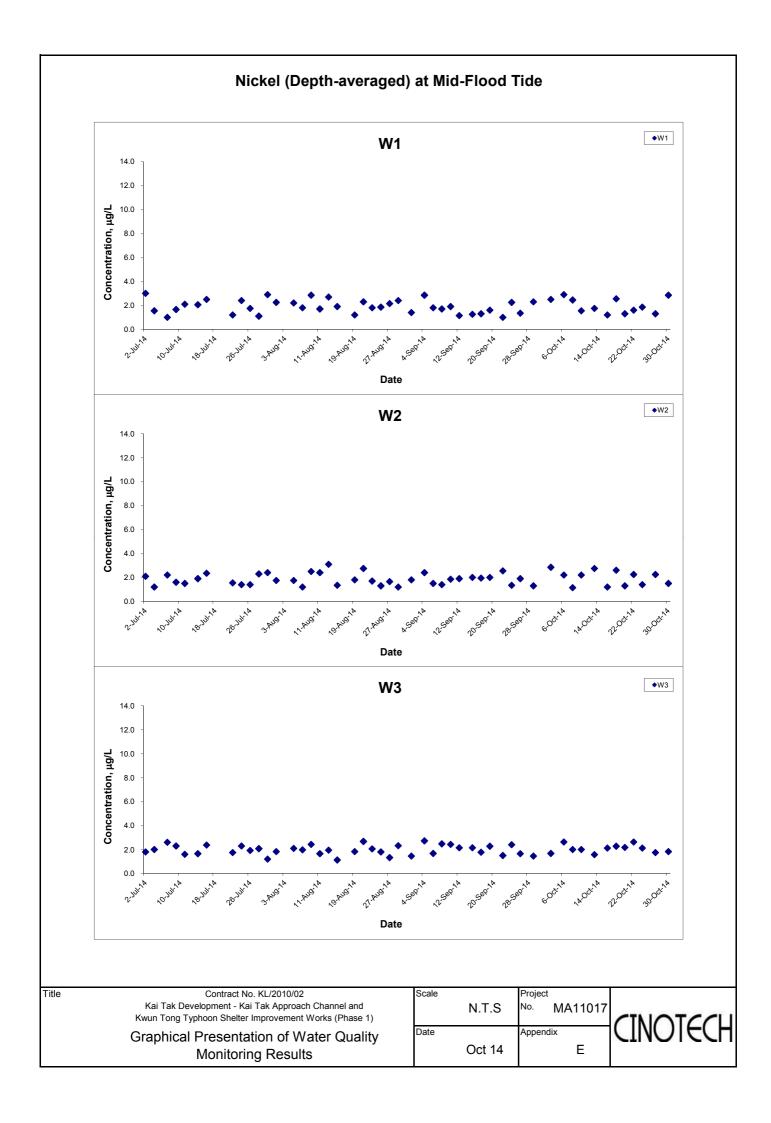
Scale		Project	
	N.T.S	No. MA1101	17
Date		Appendix	
	Oct 14	Е	


Mercury (Depth-averaged) at Mid-Flood Tide

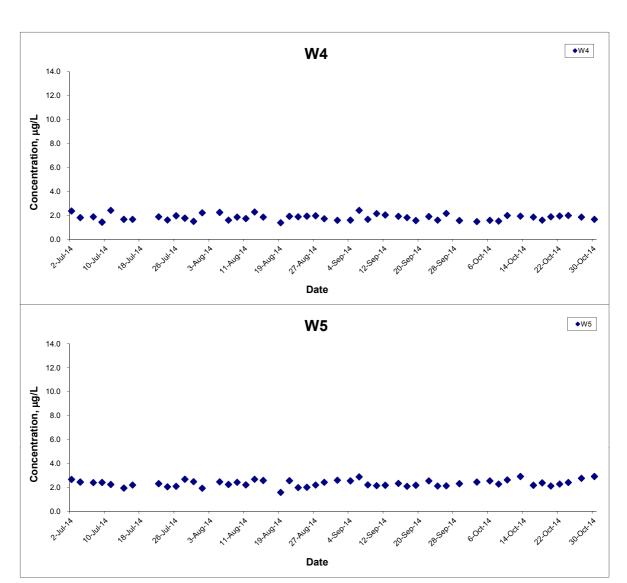

Remarks: The graphical point at zero concentration is presented as $<0.2 \mu g/L$

Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality
Monitoring Results

Nickel (Depth-averaged) at Mid-Ebb Tide

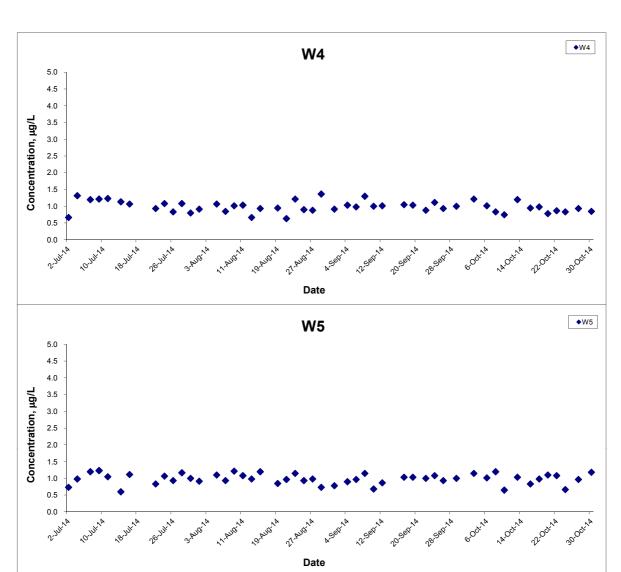

Title Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and

Kwun Tong Typhoon Shelter Improvement Works (Phase 1)


Graphical Presentation of Water Quality Monitoring Results

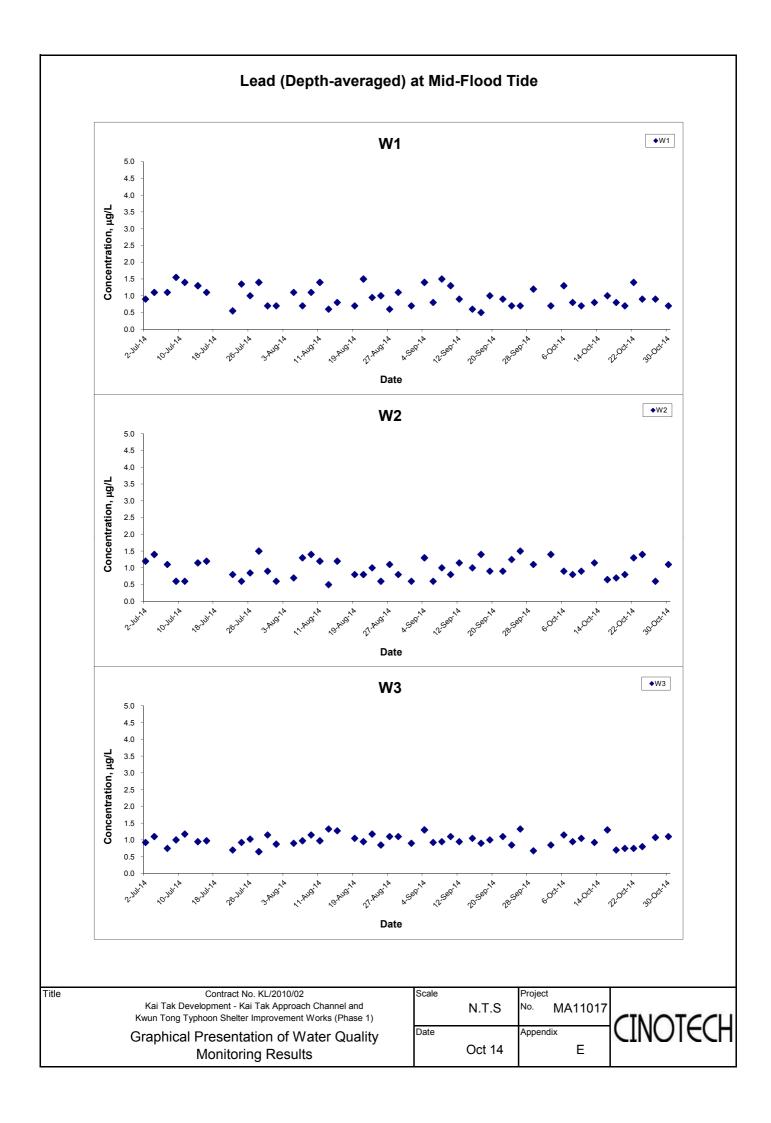
Scale Project No. N.T.S MA11017 Date Appendix Ε Oct 14

Nickel (Depth-averaged) at Mid-Flood Tide

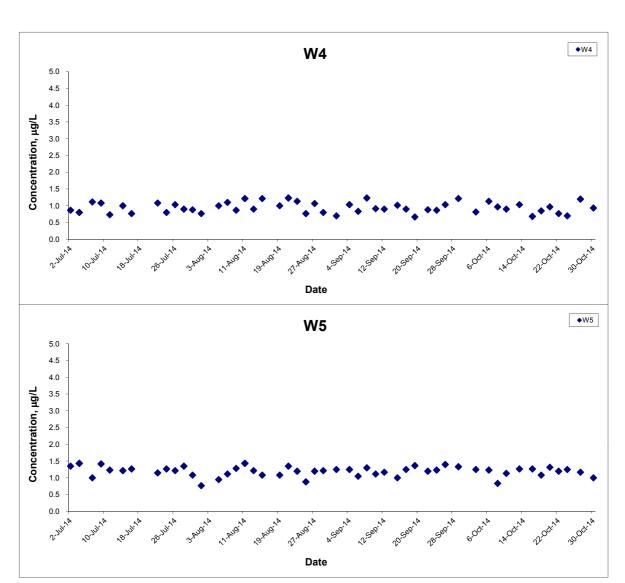

Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

Lead (Depth-averaged) at Mid-Ebb Tide

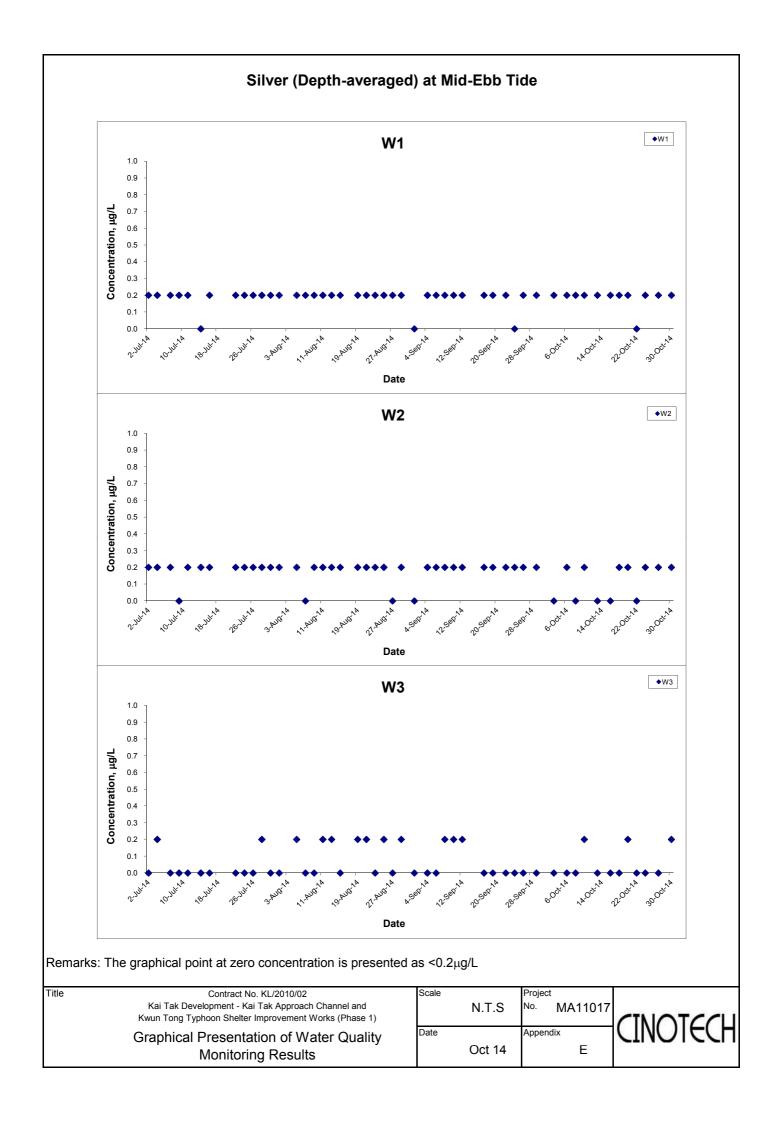


Title

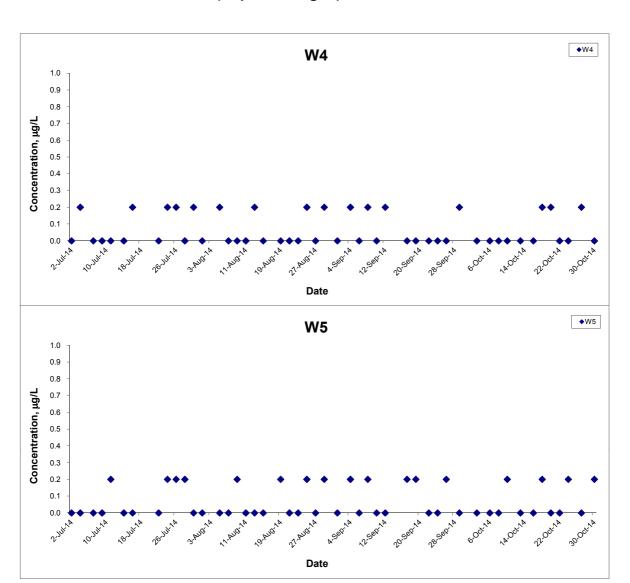

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

Lead (Depth-averaged) at Mid-Flood Tide

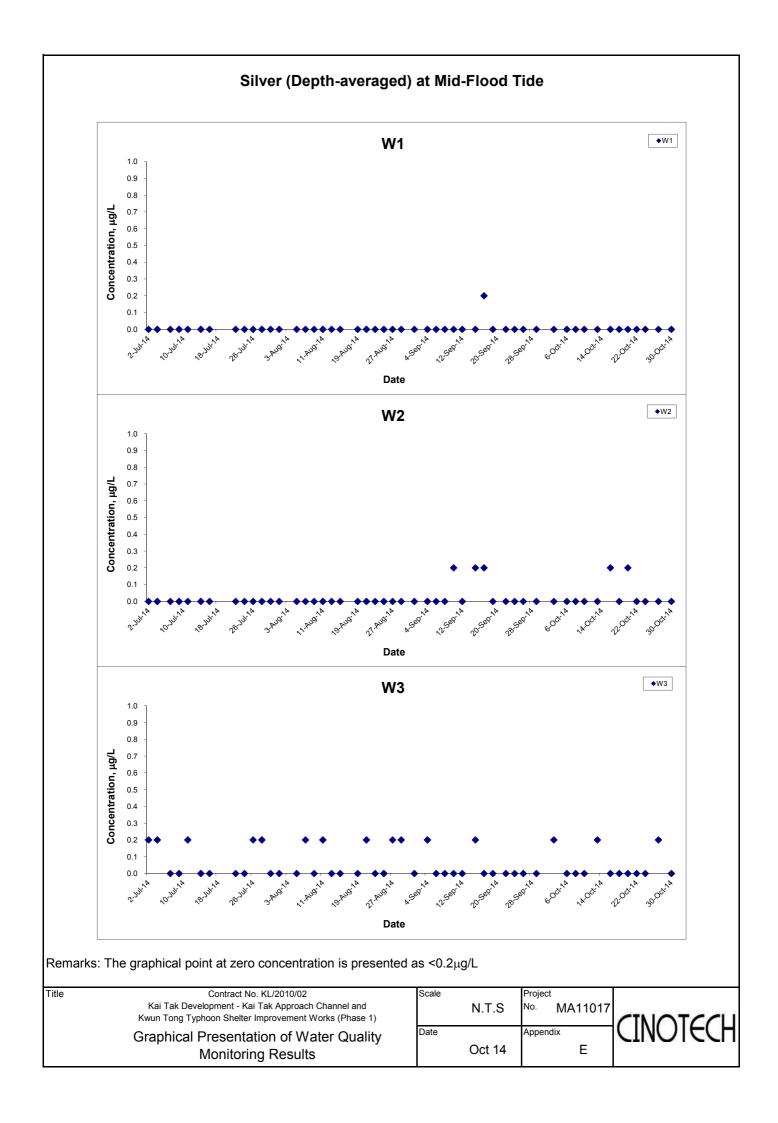


Title

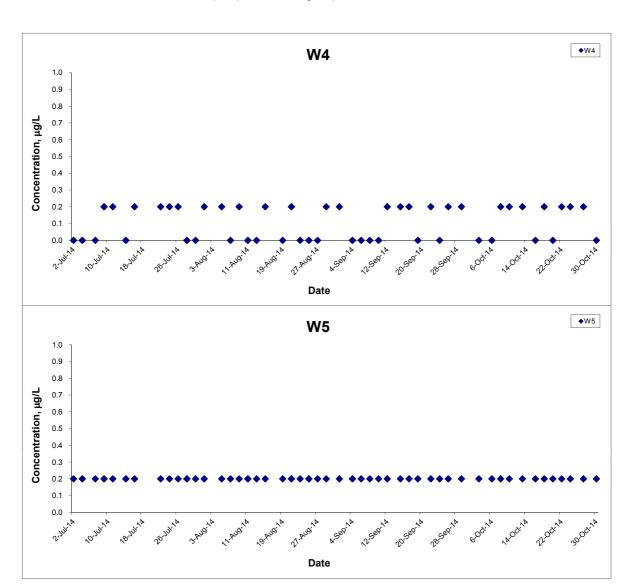

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

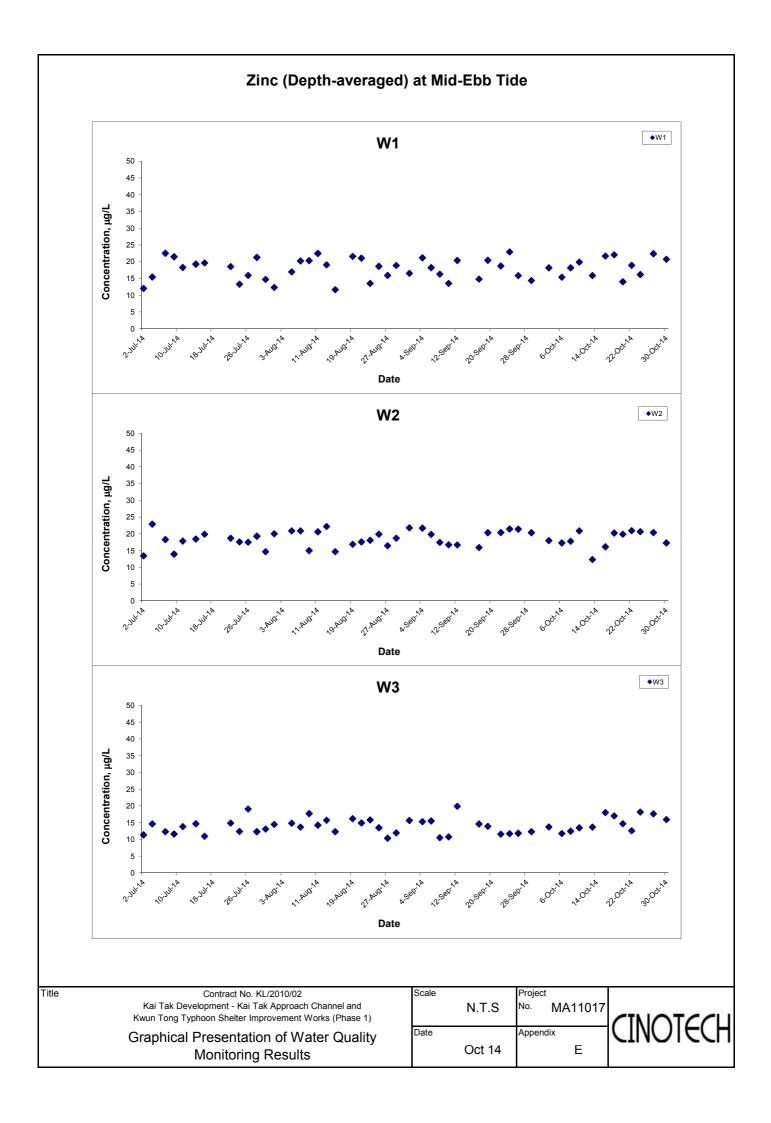
Silver (Depth-averaged) at Mid-Ebb Tide

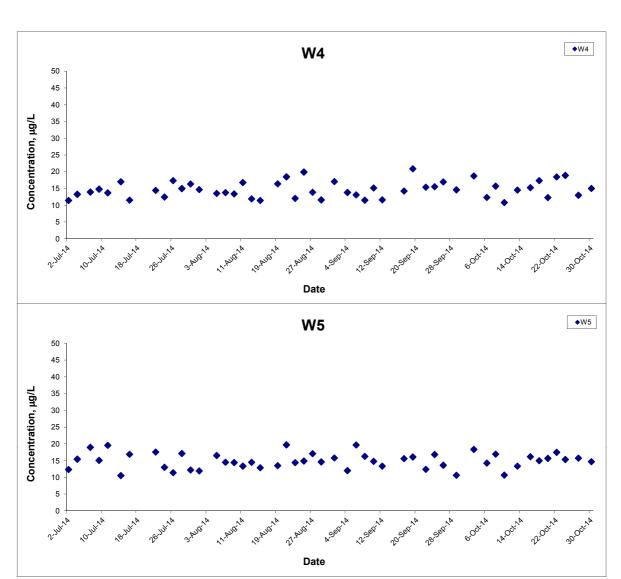

Remarks: The graphical point at zero concentration is presented as <0.2µg/L

Monitoring Results


Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality

Scale		Projec	ct
	N.T.S	No.	MA11017
Date		Apper	ndix
	Oct 14		Е

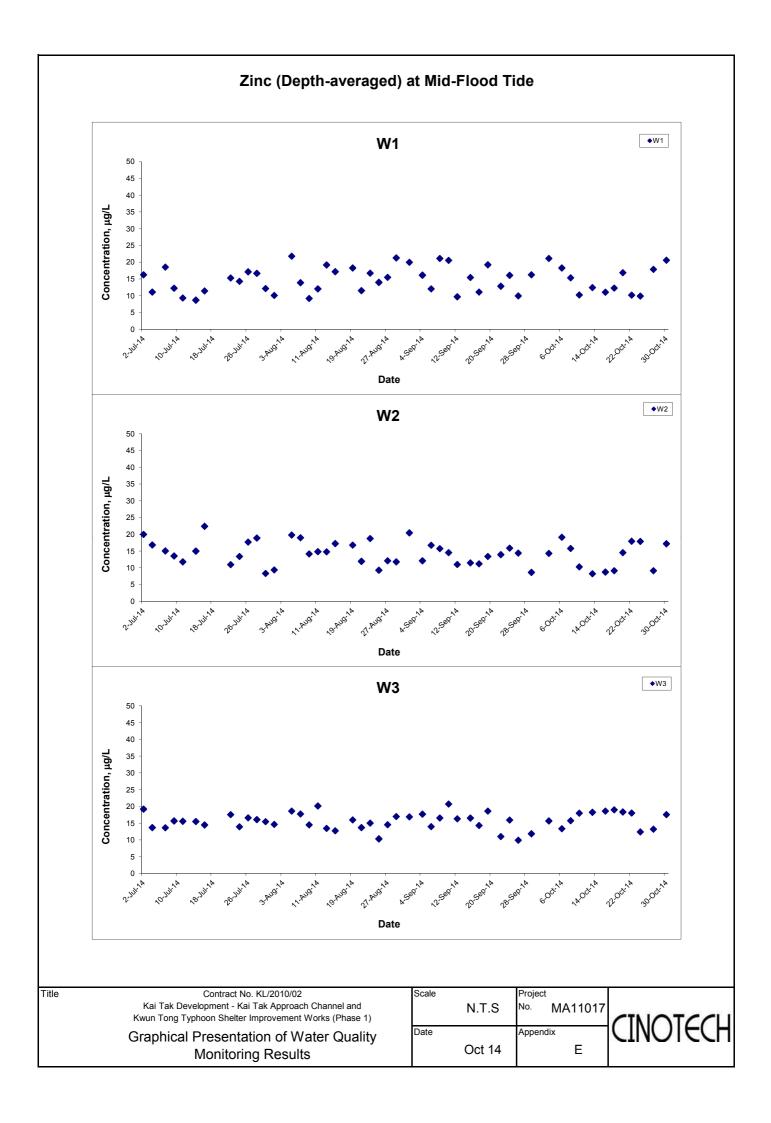

Silver (Depth-averaged) at Mid-Flood Tide


Remarks: The graphical point at zero concentration is presented as $<0.2 \mu g/L$

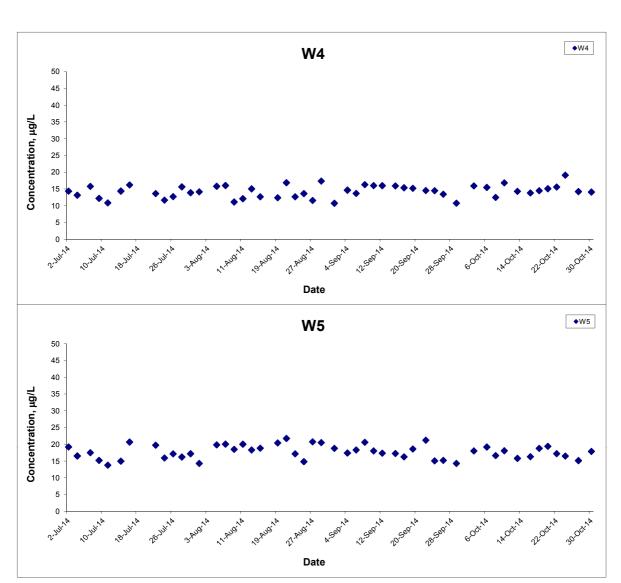
Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)
Graphical Presentation of Water Quality
Monitoring Results

Scale
N.T.S
No. MA11017

Zinc (Depth-averaged) at Mid-Ebb Tide



Title


Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Graphical Presentation of Water Quality
Monitoring Results

Zinc (Depth-averaged) at Mid-Flood Tide

Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Title

Graphical Presentation of Water Quality
Monitoring Results

 N.T.S
 Project No.
 MA11017

 Date
 Appendix
 E

APPENDIX F
LABORATORY TESTING REPORT
FOR WATER QUALITY
MONITORING

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21166
Date of Issue:	2014-10-09
Date Received:	2014-10-03
Date Tested:	2014-10-03
Date Completed:	2014-10-09

ATTN:

Miss Mei Ling Tang

Page:

1 of 5

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/141003

Sampling Date : 2014-10-03

Tost Poguested & Methodology

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 µg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

WELLAB 匯 Testing & Research 力 Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 21166

 Date of Issue:
 2014-10-09

 Date Received:
 2014-10-03

 Date Tested:
 2014-10-03

 Date Completed:
 2014-10-09

Page:

2 of 5

Results:

Results:						
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21166-1	21166-2	21166-3	21166-4	21166-5	21166-6
Suspended Solids (SS), mg/L	16.0	14.6	8.2	9.6	9.5	7.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.42	2.44	2.41	2.47	0.78	0.80
Cadmium (Cd), μg/L	0.3	0.5	0.2	0.3	0.3	0.2
Chromium (Cr), μg/L	2,2	2.5	1.3	3.0	1.7	2.4
Copper (Cu), µg/L	6.5	5.9	7.7	6.1	7.2	6.3
Mercury (Hg), μg/L	0.3	0.2	<0.2	0.2	<0.2	0.2
Nickel (Ni), μg/L	1.9	1.9	1.2	2.1	1.8	1.1
Lead (Pb), μg/L	1.5	1.2	1.4	0.6	1.6	1.3
Silver (Ag), μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	17.9	17.8	14.3	13.2	22.9	18.5

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21166-7	21166-8	21166-9	21166-10	21166-11	21166-12
Suspended Solids (SS), mg/L	9.2	10.5	4.2	5.5	10.7	13.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.77	0.79	0.80	0.79	1.86	1.20
Cadmium (Cd), μg/L	0.2	0.1	0.1	0.3	0.2	0.1
Chromium (Cr), µg/L	1.1	1.9	1.6	1.6	1.5	1.9
Copper (Cu), µg/L	7.8	5.3	6.3	6.5	6.1	6.1
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	0.2	<0.2
Nickel (Ni), μg/L	1.7	1.1	2.1	2.9	2.5	2.8
Lead (Pb), μg/L	0.8	1.4	0.6	1.4	0.7	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	15.1	20.8	19.3	15.0	21.2	14.5

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21166

 Date of Issue:
 2014-10-09

 Date Received:
 2014-10-03

 Date Tested:
 2014-10-03

 Date Completed:
 2014-10-09

Page:

3 of 5

Results:

Results:			****	3374	XX74 -	W.5 o
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21166-13	21166-14	21166-15	21166-16	21166-17	21166-18
Suspended Solids (SS), mg/L	9.7	11.1	12.1	5.4	10.8	13.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.67	1.70	1.06	1.07	1.06	1.06
Cadmium (Cd), μg/L	0.4	<0.1	0.5	<0.1	<0.1	0.1
Chromium (Cr), µg/L	1.4	2.1	1.6	2.9	2.0	2.9
Copper (Cu), µg/L	6.3	6.7	7.0	6.4	5.2	7.5
Mercury (Hg), μg/L	<0.2	0.2	0.3	<0.2	<0.2	0.3
Nickel (Ni), µg/L	2.3	1.1	1.1	1.6	1.8	2.8
Lead (Pb), μg/L	0.8	0.9	0.8	0.9	0.7	1.4
Silver (Ag), μg/L	<0.2	0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	18.4	13.4	15.9	17.9	13.9	19.8

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21166-19	21166-20	21166-21	21166-22	21166-23	21166-24
Suspended Solids (SS), mg/L	16.7	14.3	16.1	14.9	8.2	9.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.07	1.07	2.42	2.46	2,36	2.48
Cadmium (Cd), μg/L	0.5	0.4	0.3	0.5	0.2	0.3
Chromium (Cr), µg/L	2.6	3.1	2.2	2.5	1.3	2.9
Copper (Cu), μg/L	5.7	5.0	6.7	6.0	7.4	5.9
Mercury (Hg), μg/L	0.2	0.3	0.3	0.2	<0.2	0.2
Nickel (Ni), μg/L	2.8	1.7	1.9	1.8	1.1	2.0
Lead (Pb), μg/L	1.1	1.2	1.5	1.2	1.4	0.6
Silver (Ag), μg/L	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	14.8	19.3	18.5	18.2	14.2	13.2

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

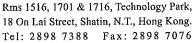
21166 Laboratory No.: Date of Issue: 2014-10-09 2014-10-03 Date Received: 2014-10-03 Date Tested: Date Completed: 2014-10-09

Page:

4 of 5

Results:

Results:						
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21166-25	21166-26	21166-27	21166-28	21166-29	21166-30
Suspended Solids (SS), mg/L	9.9	6.7	9.4	10.1	4.1	5.3
Nitrate-nitrogen (NO ₃ -N), mg	0.81	0.78	0.77	0.79	0.81	0.78
Cadmium (Cd), μg/L	0.3	0.2	0.2	0.1	0.1	0.3
Chromium (Cr), µg/L	1.7	2.4	1.1	1.9	1.6	1.6
Copper (Cu), μg/L	6.9	6.2	7.5	5.5	6.3	6.5
Mercury (Hg), μg/L	<0.2	0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.7	1.1	1.7	1.1	2.1	2.9
Lead (Pb), μg/L	1.6	1.2	0.8	1.5	0.6	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	22.6	18.2	15.1	21.0	19.4	14.6


Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	М	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21166-31	21166-32	21166-33	21166-34	21166-35	21166-36
Suspended Solids (SS), mg/L	10.3	12.8	9.5	11.0	11.9	5.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.83	1.11	1.55	1.56	1.06	1.06
Cadmium (Cd), μg/L	0.2	0.1	0.4	<0.1	0.5	<0.1
Chromium (Cr), μg/L	1.4	2.0	1.4	2.1	1.6	3.0
Copper (Cu), µg/L	6.1	6.2	6.3	7.0	7.1	6.4
Mercury (Hg), μg/L	0.3	<0.2	<0.2	0.3	0.3	<0.2
Nickel (Ni), μg/L	2.5	2.9	2.2	1.1	1.1	1.6
Lead (Pb), μg/L	0.7	1.4	0.8	0.9	0.8	0.9
Silver (Ag), μg/L	< 0.2	<0.2	<0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	21.1	14.1	17.7	13.2	15.7	18.4

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

Website: www.wellab.com.hk

TEST REPORT

21166 Laboratory No.: Date of Issue: 2014-10-09 Date Received: 2014-10-03 Date Tested: 2014-10-03 Date Completed: 2014-10-09

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21166-37	21166-38	21166-39	21166-40
Suspended Solids (SS), mg/L	10.6	13.6	16.9	14.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.06	1.05	1.07	1.07
Cadmium (Cd), μg/L	<0.1	0.1	0.5	0.4
Chromium (Cr), μg/L	2.0	2.8	2.6	2.9
Copper (Cu), µg/L	5.2	7.2	5.7	5.0
Mercury (Hg), μg/L	0.2	0.2	0.2	0.3
Nickel (Ni), μg/L	1.7	2.9	2.8	1.7
Lead (Pb), μg/L	0.8	1.4	1.2	1.2
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	13.9	20.2	15.3	18.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

The second secon
21174
2014-10-10
2014-10-06
2014-10-06

ATTN:

Miss Mei Ling Tang

Page:

Date Completed:

1 of 5

2014-10-10

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/141006

Sampling Date : 2014-10-06

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

21174 Laboratory No.: 2014-10-10 Date of Issue: Date Received: 2014-10-06 Date Tested: 2014-10-06 2014-10-10 Date Completed:

Page:

2 of 5

Dogultor

Results:			1110	1170	XIII a	W/A o
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21174-1	21174-2	21174-3	21174-4	21174-5	21174-6
Suspended Solids (SS), mg/L	16.2	13.9	10.8	10.3	9.5	11.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.97	4.24	4.27	4.55	0.10	0.11
Cadmium (Cd), μg/L	0.5	0.4	0.4	0.5	0.3	0.1
Chromium (Cr), μg/L	2.9	2.6	2.2	1.3	1.4	2.4
Copper (Cu), µg/L	7.9	5.9	5.3	6.6	7.8	6.0
Mercury (Hg), μg/L	0.3	0.2	<0.2	<0.2	0.2	<0.2
Nickel (Ni), μg/L	2.3	2.9	1.8	2.8	1.5	1.7
Lead (Pb), μg/L	1.2	1.4	1.2	0.9	1.0	0.9
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	15.4	17.7	9.4	14.4	15.5	8.7

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21174-7	21174-8	21174-9	21174-10	21174-11	21174-12
Suspended Solids (SS), mg/L	8.8	13.7	7.9	11.4	7.9	6.8
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.09	0.10	0.14	0.10	1.85	1.87
Cadmium (Cd), µg/L	0.4	0.4	0.1	0.4	<0.1	0.4
Chromium (Cr), µg/L	1.5	2.8	2.7	1.8	2.5	1.1
Copper (Cu), µg/L	6.3	7.2	6.5	6.3	6.1	6.0
Mercury (Hg), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.6	1,4	1.7	1.7	2.9	2.2
Lead (Pb), μg/L	1.2	0.8	0.8	1.4	1.3	0.9
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	13.4	17.0	12.6	12.8	18.3	19.1

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21174

 Date of Issue:
 2014-10-10

 Date Received:
 2014-10-06

 Date Tested:
 2014-10-06

 Date Completed:
 2014-10-10

Page:

3 of 5

Results:

Results:						
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21174-13	21174-14	21174-15	21174-16	21174-17	21174-18
Suspended Solids (SS), mg/L	12.5	11.9	7.2	6.4	3.8	8.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.89	1.91	0.98	0.98	0.81	0.99
Cadmium (Cd), μg/L	0.1	0.4	0.1	0.1	<0.1	0.4
Chromium (Cr), μg/L	2.8	2.3	1.3	2.3	1.1	1.1
Copper (Cu), µg/L	5.3	8.0	5.4	7.8	6.0	5.8
Mercury (Hg), μg/L	0.2	<0.2	0.2	0.2	0.2	0.3
Nickel (Ni), μg/L	2.2	3.0	1.2	1.2	2.4	2.1
Lead (Pb), μg/L	0.7	1.6	0.9	1.3	1.2	1,4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	12.2	14.7	10.8	19.9	15.5	22.8

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21174-19	21174-20	21174-21	21174-22	21174-23	21174-24
Suspended Solids (SS), mg/L	9.7	13.3	15.8	14.4	11.0	10.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.98	0.98	4.00	4.25	4.35	4.53
Cadmium (Cd), μg/L	0.3	0.5	0.5	0.4	0.4	0.5
Chromium (Cr), µg/L	3.0	2.4	2.9	2.6	2.2	1.4
Copper (Cu), µg/L	7.9	7.6	8.0	6.1	5.2	6.5
Mercury (Hg), μg/L	0.3	0.3	0.3	0.2	<0.2	<0.2
Nickel (Ni), μg/L	3.1	2.5	2.3	3.0	1.8	2.8
Lead (Pb), μg/L	1.5	0.8	1.2	1.4	1.2	0.9
Silver (Ag), μg/L	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	15.4	19.2	15.4	16.9	9.0	14.3

Remarks: $1) \le less than$

2) S = Surface, M = Middle, B = Bottom

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 21174 2014-10-10 Date of Issue: Date Received: 2014-10-06 2014-10-06 Date Tested: 2014-10-10 Date Completed:

Page:

4 of 5

Decultor

Results:						
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21174-25	21174-26	21174-27	21174-28	21174-29	21174-30
Suspended Solids (SS), mg/L	9.4	11.4	8.9	13.3	8.2	11.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.10	0.11	0.09	0.10	0.13	0.10
Cadmium (Cd), μg/L	0.3	0.1	0.3	0.4	0.1	0.4
Chromium (Cr), μg/L	1.4	2.5	1.4	2.8	2.8	1.7
Copper (Cu), μg/L	8.0	6.1	6.3	7.3	6.3	6.3
Mercury (Hg), μg/L	0.2	<0.2	<0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	1.5	1.6	2.6	1.4	1.8	1.7
Lead (Pb), μg/L	1.0	0.8	1.2	0.8	0.8	1.5
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	15.2	8.6	12.8	17.6	12.7	12.8

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21174-31	21174-32	21174-33	21174-34	21174-35	21174-36
Suspended Solids (SS), mg/L	7.8	6.9	12.0	11.9	7.3	6.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.87	1.84	1.86	1.89	0.98	0.97
Cadmium (Cd), μg/L	<0.1	0.4	0.1	0.4	0.1	0.1
Chromium (Cr), μg/L	2.5	1.1	2.7	2.3	1.4	2.4
Copper (Cu), μg/L	6.1	6.0	5.4	7.6	5.3	7.6
Mercury (Hg), μg/L	0.2	0.2	0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	2.9	2.2	2.2	3.1	1.2	1.1
Lead (Pb), μg/L	1.3	0.9	0.7	1.6	0.9	1.3
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), μg/L	18.3	19.2	12.1	14.4	10.9	19.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21174

 Date of Issue:
 2014-10-10

 Date Received:
 2014-10-06

 Date Tested:
 2014-10-06

 Date Completed:
 2014-10-10

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21174-37	21174-38	21174-39	21174-40
Suspended Solids (SS), mg/L	3.9	8.3	9.7	12.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.81	0.98	0.97	0.98
Cadmium (Cd), µg/L	<0.1	0.4	0.3	0.5
Chromium (Cr), μg/L	1.1	1.1	2.8	2.4
Copper (Cu), µg/L	6.1	5.6	7.8	7.3
Mercury (Hg), μg/L	0.2	0.3	0.3	0.3
Nickel (Ni), μg/L	2.4	2.1	3.0	2.5
Lead (Pb), μg/L	1.2	1.4	1.5	0.8
Silver (Ag), μg/L	<0.2	<0.2	0.2	<0.2
Zinc (Zn), μg/L	15.9	23.3	15.4	19.1

Remarks: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21198
Date of Issue:	2014-10-14
Date Received:	2014-10-08
Date Tested:	2014-10-08
Date Completed:	2014-10-14

1 of 5

ATTN:

Miss Mei Ling Tang

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/141008

Sampling Date : 2014-10-08

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

21198 Laboratory No.: 2014-10-14 Date of Issue: Date Received: 2014-10-08 Date Tested: 2014-10-08 2014-10-14 Date Completed:

Page:

2 of 5

Deculte.

Results:						
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21198-1	21198-2	21198-3	21198-4	21198-5	21198-6
Suspended Solids (SS), mg/L	14.2	12.3	11.1	13.2	13.8	9.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.66	2.75	2.85	2.83	0.16	0.16
Cadmium (Cd), μg/L	0.4	0.4	0.3	0.2	0.2	0.5
Chromium (Cr), µg/L	3.1	2.5	1.6	2.7	1.9	2.9
Copper (Cu), μg/L	6.0	7.3	6.1	5.1	7.5	5.9
Mercury (Hg), μg/L	0.3	0.3	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.4	2.8	2.1	2.2	1.2	1.2
Lead (Pb), μg/L	1.3	1.1	0.5	0.7	1.2	0.6
Silver (Ag), µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	18.0	17.8	15.3	9.6	12.7	19.7

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21198-7	21198-8	21198-9	21198-10	21198-11	21198-12
Suspended Solids (SS), mg/L	11.7	12.8	10.3	9.1	11.0	10.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.16	0.16	0.16	0.16	2.68	2.65
Cadmium (Cd), μg/L	0.2	0.3	0.5	0.5	0.1	0.2
Chromium (Cr), µg/L	1.7	1.5	2.4	1.4	1.0	2.3
Copper (Cu), µg/L	6.0	7.2	8.0	5.4	5.0	6.2
Mercury (Hg), μg/L	0.3	<0.2	0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.5	1.4	1.0	2.6	2.5	1.2
Lead (Pb), μg/L	0.7	0.9	1.3	1.4	0.8	0.8
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	14.5	12.1	21.4	17.5	15.5	15.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Laboratory No.: 21198 2014-10-14 Date of Issue: 2014-10-08 Date Received: 2014-10-08 Date Tested: 2014-10-14 Date Completed:

Page:

3 of 5

Doculte.

Results:					r	
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21198-13	21198-14	21198-15	21198-16	21198-17	21198-18
Suspended Solids (SS), mg/L	11.4	10.3	8.7	12.7	14.8	10.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.60	2.63	1.97	1.97	1.97	1.97
Cadmium (Cd), μg/L	0.1	0.4	0.5	0.2	0.2	0.4
Chromium (Cr), µg/L	1.3	2.5	2.5	1.5	1.9	2.4
Copper (Cu), μg/L	6.1	5.8	5.7	6.4	5.1	6.3
Mercury (Hg), μg/L	0.2	<0.2	<0.2	0.3	0.2	0.3
Nickel (Ni), μg/L	1.1	2.9	1.7	1.9	1.0	2.9
Lead (Pb), μg/L	1.1	0.8	0.7	0.7	1.5	0.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	17.2	14.7	9.3	19.6	8.5	19.3

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21198-19	21198-20	21198-21	21198-22	21198-23	21198-24
Suspended Solids (SS), mg/L	11.1	14.9	13.9	12.5	12.5	11.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.97	1.97	2.75	2.81	2.78	2.85
Cadmium (Cd), μg/L	0.5	0.2	0.4	0.4	0.3	0.2
Chromium (Cr), μg/L	2.5	1.2	3.1	2.5	1.7	2.7
Copper (Cu), μg/L	5.2	7.3	6.0	7.1	6.2	5,1
Mercury (Hg), μg/L	0.2	0.3	0.3	0.3	<0.2	<0.2
Nickel (Ni), μg/L	1.5	2.5	2.4	2.8	2.1	2.2
Lead (Pb), μg/L	1.2	0.7	1.3	1.1	0.5	0.7
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.2	20.2	18.4	17.8	15.3	9.7

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21198

 Date of Issue:
 2014-10-14

 Date Received:
 2014-10-08

 Date Tested:
 2014-10-08

 Date Completed:
 2014-10-14

Page:

4 of 5

Results:

Results:						
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21198-25	21198-26	21198-27	21198-28	21198-29	21198-30
Suspended Solids (SS), mg/L	13.9	9.5	11.7	12.5	10.6	9.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.16	0.16	0.16	0.16	0.16	0.16
Cadmium (Cd), μg/L	0.2	0.5	0.2	0.3	0.5	0.5
Chromium (Cr), μg/L	2.0	2.8	1.7	1.5	2.4	1.5
Copper (Cu), µg/L	7.5	6.2	5.7	7.2	8.1	5.4
Mercury (Hg), μg/L	0.2	<0.2	0.3	<0.2	0.2	<0.2
Nickel (Ni), μg/L	1.2	1.2	2.5	1.3	1.0	2.5
Lead (Pb), μg/L	1.2	0.6	0.7	0.9	1.3	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	12.7	19.9	14.8	12.5	21.5	16.7

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21198-31	21198-32	21198-33	21198-34	21198-35	21198-36
Suspended Solids (SS), mg/L	11.1	10.1	11.4	10.0	8.7	12.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.60	2.68	2.56	2.65	1.95	1.98
Cadmium (Cd), μg/L	0.1	0.2	0.1	0.4	0.5	0.2
Chromium (Cr), μg/L	1.1	2.3	1.3	2.5	2.5	1.5
Copper (Cu), μg/L	5.0	6.3	6.1	5.6	5.7	6.5
Mercury (Hg), μg/L	<0.2	<0.2	0.2	<0.2	<0.2	0.3
Nickel (Ni), μg/L	2.4	1.1	1.1	2.9	1.6	1.9
Lead (Pb), μg/L	0.8	0.8	1.1	0.8	0.7	0.7
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	0.2	<0.2
Zinc (Zn), µg/L	15.2	15.7	16.4	14.6	9.5	19.7

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Laboratory No.:	21198
•	
Date of Issue:	2014-10-14
Date Received:	2014-10-08
Date Tested:	2014-10-08
Date Completed:	2014-10-14

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21198-37	21198-38	21198-39	21198-40
Suspended Solids (SS), mg/L	15.2	10.9	10.9	14.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.97	1.98	1.97	1.97
Cadmium (Cd), μg/L	0.2	0.4	0.5	0.2
Chromium (Cr), µg/L	1.8	2.4	2.4	1.2
Copper (Cu), µg/L	5.2	6.2	5.0	7.5
Mercury (Hg), μg/L	0.2	0.3	0.2	0.3
Nickel (Ni), μg/L	1.0	2.9	1.4	2.5
Lead (Pb), μg/L	1.5	0.6	1.2	0.7
Silver (Ag), μg/L	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	8.4	19.9	10.1	20.3

Remarks: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21205 Laboratory No.: Date of Issue: 2014-10-16

Date Received:

2014-10-10

Date Tested:

2014-10-10

Date Completed:

2014-10-16

ATTN:

Miss Mei Ling Tang

Page:

1 of 5

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MAI 1017/141010

Sampling Date : 2014-10-10

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

TEST REPORT

 Laboratory No.:
 21205

 Date of Issue:
 2014-10-16

 Date Received:
 2014-10-10

 Date Tested:
 2014-10-16

 Date Completed:
 2014-10-16

Page:

2 of 5

Results:

Results:						
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	М	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21205-1	21205-2	21205-3	21205-4	21205-5	21205-6
Suspended Solids (SS), mg/L	10.1	10.2	11.7	8.5	9.5	6.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.86	1.95	1.91	1.95	0.78	0.77
Cadmium (Cd), μg/L	0.4	0.5	<0.1	0.4	0.2	0.3
Chromium (Cr), μg/L	3.0	2.4	1.8	1.2	1.1	1.2
Copper (Cu), µg/L	7.1	7.3	7.2	6.7	7.8	7.5
Mercury (Hg), μg/L	0.3	0.3	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.9	2.4	1.9	1.6	1.6	2.6
Lead (Pb), μg/L	1.1	1.4	1.5	0.6	0.7	0.6
Silver (Ag), μg/L	0.2	0.2	<0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.0	21.4	9.2	17.3	9.5	10.7

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21205-7	21205-8	21205-9	21205-10	21205-11	21205-12
Suspended Solids (SS), mg/L	7.2	5.8	9.5	9.9	9.5	8.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.78	0.78	0.79	0.68	2.48	2.50
Cadmium (Cd), μg/L	0.1	0.2	0.2	0.5	0.3	0.3
Chromium (Cr), µg/L	2.8	3.0	2.5	2.4	1.5	2.2
Copper (Cu), μg/L	5.3	6.3	7.7	6.7	6.4	5.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.3	1.4	1.0	2.2	1.6	2.2
Lead (Pb), μg/L	1.0	0.7	0.6	0.6	0.7	0.9
Silver (Ag), µg/L	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	12.4	8.2	8.9	15.0	10.4	10.3

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

WELLAB 匯 Testing & Research Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 21205

 Date of Issue:
 2014-10-16

 Date Received:
 2014-10-10

 Date Tested:
 2014-10-10

 Date Completed:
 2014-10-16

Page:

3 of 5

Results:

Results:						
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21205-13	21205-14	21205-15	21205-16	21205-17	21205-18
Suspended Solids (SS), mg/L	6.8	7.0	4.4	6.1	12.0	3.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.53	2.49	1.50	1.51	1.50	1.52
Cadmium (Cd), μg/L	0.2	0.2	0.5	0.1	0.2	0.5
Chromium (Cr), μg/L	1.6	1.8	1.4	2.4	2.2	2.9
Copper (Cu), µg/L	6.2	7.7	7.9	7.0	5.2	8.0
Mercury (Hg), μg/L	<0.2	0.3	0.2	0.2	0.2	0.3
Nickel (Ni), μg/L	1.4	2.6	2.1	2.3	1.6	2.9
Lead (Pb), µg/L	1.3	0.8	0.9	1.2	0.6	0.6
Silver (Ag), μg/L	<0.2	<0.2	0.2	<0.2	<0.2	0.2
Zinc (Zn), µg/L	19.4	16.4	12.2	17.7	21.6	23.2

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21205-19	21205-20	21205-21	21205-22	21205-23	21205-24
Suspended Solids (SS), mg/L	8.1	10.8	10.0	10.1	11.1	8.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.50	1.49	1.89	1.97	1.94	1.96
Cadmium (Cd), μg/L	0.5	0.2	0.4	0.5	<0.1	0.5
Chromium (Cr), μg/L	2.2	1.0	2.9	2.4	1.9	1.2
Copper (Cu), μg/L	5.4	5.2	7.0	7.5	7.0	6.8
Mercury (Hg), μg/L	0.3	0.3	0.3	0.3	0.2	0.2
Nickel (Ni), μg/L	2.7	2.3	3.0	2.4	1.9	1.6
Lead (Pb), μg/L	1.4	1.4	1.0	1.4	1.4	0.6
Silver (Ag), μg/L	0.2	<0.2	0.2	0.2	<0.2	0.2
Zinc (Zn), μg/L	21.9	9.5	19.8	20.4	9.3	18.1

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21205

 Date of Issue:
 2014-10-16

 Date Received:
 2014-10-10

 Date Tested:
 2014-10-16

 Date Completed:
 2014-10-16

Page:

4 of 5

Results:

Results:			r			
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21205-25	21205-26	21205-27	21205-28	21205-29	21205-30
Suspended Solids (SS), mg/L	9.3	6.7	7.0	5.7	9.7	9.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.78	0.75	0.79	0.78	0.77	0,66
Cadmium (Cd), μg/L	0.2	0.3	0.1	0.2	0.2	0.5
Chromium (Cr), μg/L	1.1	1.2	2.7	3.1	2.5	2.5
Copper (Cu), µg/L	7.6	7.6	5.3	6.2	7.8	6.7
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	1.6	2.5	2.3	1.4	1.0	2.2
Lead (Pb), μg/L	0.7	0.6	0.9	0.7	0.7	0.6
Silver (Ag), μg/L	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	9.3	10.8	12.3	8.1	9.2	14.7

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21205-31	21205-32	21205-33	21205-34	21205-35	21205-36
Suspended Solids (SS), mg/L	9.3	8.2	6.8	6.9	4.5	6.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.51	2.54	2.50	2.57	1.47	1.55
Cadmium (Cd), μg/L	0.3	0.3	0.2	0.2	0.5	0.1
Chromium (Cr), μg/L	1.4	2.3	1.6	1.9	1.3	2.3
Copper (Cu), µg/L	6.4	5.2	6.0	7.6	7.6	7.1
Mercury (Hg), μg/L	0.2	0.2	<0.2	0.3	0.2	0.2
Nickel (Ni), μg/L	1.5	2.2	1.4	2.6	2.1	2.2
Lead (Pb), μg/L	0.7	0.9	1.3	0.8	0.9	1.2
Silver (Ag), μg/L	< 0.2	<0.2	<0.2	<0.2	0.2	<0.2
Zinc (Zn), μg/L	10.1	10.3	19.6	16.6	11.9	16.7

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Laboratory No.:	21205
Date of Issue:	2014-10-16
Date Received:	2014-10-10
Date Tested:	2014-10-10
Date Completed:	2014-10-16

Page:

5 of 5

Results:

Results:				/···
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21205-37	21205-38	21205-39	21205-40
Suspended Solids (SS), mg/L	12.4	3.7	8.4	10.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.53	1.54	1.45	1.46
Cadmium (Cd), μg/L	0.2	0.5	0.5	0.2
Chromium (Cr), µg/L	2.2	2.9	2.1	1.0
Copper (Cu), µg/L	5.2	8.3	5.6	5.3
Mercury (Hg), μg/L	0.2	0.2	0.3	0.3
Nickel (Ni), μg/L	1.6	2.9	2.8	2.2
Lead (Pb), μg/L	0.6	0.6	1.4	1.4
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	20.9	22.2	21.9	9.8

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21222
Date of Issue:	2014-10-17
Date Received:	2014-10-13
Date Tested:	2014-10-13

Page:

Date Completed:

1 of 5

2014-10**-**17

ATTN:

Miss Mei Ling Tang

Sample Description

Project No.

: 40 liquid samples as received by customer said to be water

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/141013

Sampling Date : 2014-10-13

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

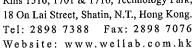
18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

21222 Laboratory No.: Date of Issue: 2014-10-17 2014-10-13 Date Received: Date Tested: 2014-10-13 2014-10-17 Date Completed:

Page:

2 of 5


Results: Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
*			S	В	S	M
Sampling Depth	M	M				
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21222-1	21222-2	21222-3	21222-4	21222-5	21222-6
Suspended Solids (SS), mg/L	18.9	17.5	11.6	16.7	12.8	15.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.62	4.81	4.76	4.91	4.75	4.80
Cadmium (Cd), μg/L	0.4	0.5	0.3	0.3	0.3	0.3
Chromium (Cr), μg/L	2.5	3.0	1.0	1.2	1.9	1.3
Copper (Cu), µg/L	6.6	6.1	6.5	7.2	6.6	7.1
Mercury (Hg), μg/L	0.3	0.3	0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	2.4	2.0	1.4	2.7	2.8	1.4
Lead (Pb), μg/L	1.6	1.2	0.6	0.6	1.1	1.5
Silver (Ag), μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	16.3	12.4	9.5	17.5	21.0	9.1

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21222-7	21222-8	21222-9	21222-10	21222-11	21222-12
Suspended Solids (SS), mg/L	8.2	12.6	14.4	15.0	12.5	14.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.90	5.05	4.81	5.80	1.08	1.08
Cadmium (Cd), μg/L	<0.1	0.3	<0.1	0.4	0.2	0.1
Chromium (Cr), µg/L	2.3	1.3	1.6	2.1	1.2	1.3
Copper (Cu), µg/L	5.6	5.6	7.4	7.9	7.1	5.4
Mercury (Hg), μg/L	0.2	0.2	0.2	0.3	<0.2	0.2
Nickel (Ni), μg/L	1.6	1.3	1.7	3.1	1.7	2.8
Lead (Pb), μg/L	1.0	0.9	1.3	0.9	0.8	1.2
Silver (Ag), µg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), µg/L	13.7	12.7	10.7	16.8	12.4	8.4

Remarks: 1) \leq = less than

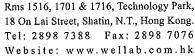
2) S = Surface, M = Middle, B = Bottom

21222 Laboratory No.: 2014-10-17 Date of Issue: 2014-10-13 Date Received: Date Tested: 2014-10-13 Date Completed: 2014-10-17

Page:

3 of 5

Results:


Results:						
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21222-13	21222-14	21222-15	21222-16	21222-17	21222-18
Suspended Solids (SS), mg/L	16.8	12.2	12.1	19.0	9.8	10.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.08	0.87	1.08	1.09	1.05	1.05
Cadmium (Cd), μg/L	<0.1	0.2	0.3	0.4	0.2	0.2
Chromium (Cr), µg/L	1.7	1.1	1.0	1.5	3.0	2.9
Copper (Cu), μg/L	8.2	6.0	6.6	6.9	5.5	6.3
Mercury (Hg), μg/L	<0.2	0.3	<0.2	<0.2	0.2	0.3
Nickel (Ni), μg/L	1.5	1.7	1.2	1.6	3.0	3.1
Lead (Pb), μg/L	0.8	1.1	1.1	1.1	0.9	1.2
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	15.5	21.3	13.1	19.7	10.4	15.8

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21222-19	21222-20	21222-21	21222-22	21222-23	21222-24
Suspended Solids (SS), mg/L	12.1	17.7	18.0	17.8	18.0	15.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.04	1.04	4.58	4.91	4.70	4.85
Cadmium (Cd), μg/L	0.2	0.5	0.4	0.4	0.3	0.3
Chromium (Cr), μg/L	2.6	1.8	2.5	3.0	1.0	1.2
Copper (Cu), μg/L	5.6	7.2	6.7	6.0	6.5	7.4
Mercury (Hg), μg/L	0.3	0.2	0.3	0.3	0.2	<0.2
Nickel (Ni), μg/L	2.7	2.9	2.5	2.0	1.5	2.7
Lead (Pb), μg/L	1.2	1.4	1.5	1.2	0.6	0.6
Silver (Ag), μg/L	0.2	0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	13,9	17.7	15.5	12.3	9.8	18.0

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

21222 Laboratory No.: 2014-10-17 Date of Issue: 2014-10-13 Date Received: Date Tested: 2014-10-13 Date Completed: 2014-10-17

Page:

4 of 5

Dogulto.

Results:						 1
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21222-25	21222-26	21222-27	21222-28	21222-29	21222-30
Suspended Solids (SS), mg/L	12.5	15.4	8.0	11.8	14.3	14.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.87	4.59	4.84	5.07	4.71	6.03
Cadmium (Cd), μg/L	0.3	0.4	<0.1	0.3	<0.1	0.4
Chromium (Cr), μg/L	1.8	1.3	2.2	1.2	1.6	2.1
Copper (Cu), µg/L	6.6	7.1	5.5	5.8	7.4	7.9
Mercury (Hg), μg/L	<0.2	0.2	0.2	0.2	0.2	0.3
Nickel (Ni), μg/L	2.6	1.4	1.6	1.3	1.7	3.0
Lead (Pb), μg/L	1.1	1.5	1.0	0.9	1.3	0.9
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.1	9.4	14.0	12.7	10.7	16.5

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21222-31	21222-32	21222-33	21222-34	21222-35	21222-36
Suspended Solids (SS), mg/L	12.5	14.5	16.7	12.5	12.1	19.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.07	1.07	1.09	0.88	1.07	1.07
Cadmium (Cd), μg/L	0.2	0.1	<0.1	0.2	0.3	0.4
Chromium (Cr), μg/L	1.2	1.2	1.7	1.0	1.0	1.4
Copper (Cu), μg/L	7.1	5.3	8.2	6.1	6.3	7.0
Mercury (Hg), μg/L	<0.2	0.2	<0.2	0.3	<0.2	<0.2
Nickel (Ni), μg/L	1.8	2.7	1.4	1.7	1.3	1.6
Lead (Pb), μg/L	0.8	1.1	0.8	1.0	1.1	1.1
Silver (Ag), μg/L	<0.2	< 0.2	<0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	12.5	8.1	15.3	20.9	12.9	19.3

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

	21222
Laboratory No.:	21222
Date of Issue:	2014-10 - 17
Date Received:	2014-10-13
Date Tested:	2014-10-13
Date Completed:	2014-10-17

Page:

5 of 5

Reculte.

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21222-37	21222-38	21222-39	21222-40
Suspended Solids (SS), mg/L	9.7	10.2	12.1	17.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.99	1.01	1.04	1.04
Cadmium (Cd), μg/L	0.2	0.2	0.2	0.5
Chromium (Cr), µg/L	3.0	2.9	2.6	1.8
Copper (Cu), µg/L	5.7	6.3	5.4	7.1
Mercury (Hg), μg/L	0.3	0.3	0.3	0.2
Nickel (Ni), μg/L	2.9	3.1	2.8	2.9
Lead (Pb), μg/L	0.9	1.2	1.2	1,4
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2
Zinc (Zn), µg/L	10.4	15.7	14.0	17.8

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21244
Date of Issue:	2014-10 - 22
Date Received:	2014-10-16
Date Tested:	2014-10-16
Date Completed:	2014-10-22

1 of 5

ATTN: Miss Mei Ling Tang

Sample Description : 40 liquid samples as received by customer said to be water

Project No. : MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Page:

Custody No. : MA11017/141016

Sampling Date : 2014-10-16

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

21244 Laboratory No.: 2014-10-22 Date of Issue: Date Received: 2014-10-16 2014-10-16 Date Tested: Date Completed: 2014-10-22

Page:

2 of 5

Doculter

Results:						
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21244-1	21244-2	21244-3	21244-4	21244-5	21244-6
Suspended Solids (SS), mg/L	12.8	14.1	7.9	8.6	9.4	9.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.92	2.94	2.87	3.06	2.99	3.00
Cadmium (Cd), μg/L	0.3	0.4	<0.1	0.2	<0.1	0.1
Chromium (Cr), µg/L	3.0	2.7	3.0	2.5	2.6	2.0
Copper (Cu), µg/L	6.1	6.2	6.5	6.7	6.9	7.1
Mercury (Hg), μg/L	0.3	0.3	<0.2	<0.2	0.2	0.3
Nickel (Ni), μg/L	2.4	2.2	1.3	2.9	3.1	1.3
Lead (Pb), μg/L	1.1	1.1	0.6	0.8	0.8	1.3
Silver (Ag), μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	21.4	16.4	17.1	18.9	9.9	13.3

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21244-7	21244-8	21244-9	21244-10	21244-11	21244-12
Suspended Solids (SS), mg/L	8.9	8.7	10.3	8.3	7.1	8.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.99	3.01	2.94	2.94	2.74	2.41
Cadmium (Cd), μg/L	0.1	0.2	0.1	<0.1	0.2	0.4
Chromium (Cr), μg/L	2.3	1.6	1.9	2.4	1.9	1.4
Copper (Cu), µg/L	7.4	6.7	6.2	7.1	6.7	5.2
Mercury (Hg), μg/L	<0.2	0.2	0.3	<0.2	0.2	<0.2
Nickel (Ni), μg/L	1.5	1.4	3.1	1.8	1.2	1.2
Lead (Pb), μg/L	0.8	1.0	0.5	1.0	1.0	0.7
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	22.3	13.4	19.8	15.1	11.0	8.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom************************

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 21244

 Date of Issue:
 2014-10-22

 Date Received:
 2014-10-16

 Date Tested:
 2014-10-16

 Date Completed:
 2014-10-22

Page:

3 of 5

Results:

Results:				I		
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21244-13	21244-14	21244-15	21244-16	21244-17	21244-18
Suspended Solids (SS), mg/L	10.9	12.2	12.3	6.6	9.3	8.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.34	2.36	2.66	2.81	2.73	2.49
Cadmium (Cd), μg/L	0.4	0.3	0.2	0.4	0.3	0.4
Chromium (Cr), μg/L	1.9	1.2	1.2	2.5	2.9	2.5
Copper (Cu), μg/L	7.0	5.4	8.1	6.9	5.3	7.1
Mercury (Hg), μg/L	<0.2	<0.2	0.3	<0.2	<0.2	0.3
Nickel (Ni), μg/L	1.4	2.9	1.6	1.1	2.8	2.9
Lead (Pb), μg/L	1.5	1.1	0.6	0.6	0.9	1.0
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	21.1	16.3	9.9	20.2	11.4	14.2

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21244-19	21244-20	21244-21	21244-22	21244-23	21244-24
Suspended Solids (SS), mg/L	9.9	13.1	12.6	14.4	8.1	8.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.86	2.42	2.81	2.86	2.79	3.16
Cadmium (Cd), μg/L	0.5	0.3	0.3	0.4	<0.1	0.2
Chromium (Cr), µg/L	2.2	3.1	3.0	2.7	2.9	2.6
Copper (Cu), µg/L	7.5	5.1	6.2	6.5	6.7	6.9
Mercury (Hg), μg/L	0.2	0.3	0.3	0.3	<0.2	<0.2
Nickel (Ni), μg/L	2.5	1.2	2.4	2.3	1.3	2.9
Lead (Pb), μg/L	1.3	1.5	1.0	1.1	0.6	0.8
Silver (Ag), μg/L	0.2	0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	18.3	16.6	22.0	15.9	17.1	19.0

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

Laboratory No.: 21244 2014-10-22 Date of Issue: 2014-10-16 Date Received: 2014-10-16 Date Tested: 2014-10-22 Date Completed:

Page:

4 of 5

Results:

Results:						T375 1
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21244-25	21244-26	21244-27	21244-28	21244-29	21244-30
Suspended Solids (SS), mg/L	9.1	9.4	9.1	9.0	10.0	8.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.10	2.95	2.86	3.01	2.90	2.92
Cadmium (Cd), µg/L	<0.1	0.1	0.1	0.2	0.1	<0.1
Chromium (Cr), μg/L	2.7	2.0	2.3	1.6	2.0	2.5
Copper (Cu), µg/L	7.0	7.1	7.3	6.7	6.2	6.9
Mercury (Hg), μg/L	0.2	0.2	<0.2	0.2	0.3	<0.2
Nickel (Ni), μg/L	3.0	1.3	1.5	1.3	3.0	1.8
Lead (Pb), µg/L	0.8	1.3	0.7	1.0	0.5	1.0
Silver (Ag), µg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.0	13.7	22.4	13.6	19.8	15.4

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21244-31	21244-32	21244-33	21244-34	21244-35	21244-36
Suspended Solids (SS), mg/L	6.9	8.3	11.1	12.3	12.1	6.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.79	2.38	2.36	2.26	2.65	2.75
Cadmium (Cd), μg/L	0.2	0.4	0.4	0.3	0.2	0.4
Chromium (Cr), μg/L	1.9	1.4	1.9	1.2	1.2	2.6
Copper (Cu), µg/L	6.7	5.2	7.0	5.4	8.2	7.1
Mercury (Hg), μg/L	0.2	<0.2	<0.2	<0.2	0.3	<0.2
Nickel (Ni), μg/L	1.2	1.2	1.4	2.8	1.6	1.1
Lead (Pb), μg/L	1.0	0.6	1.5	1.1	0.6	0.5
Silver (Ag), μg/L	<0.2	0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), µg/L	11.1	8.6	21.0	16.0	9.9	20.7

Remarks: 1) < = less than

2) S = Surface, M = Middle, B = Bottom********************************

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

Laboratory No.:	21244
Date of Issue:	2014-10-22
Date Received:	2014-10-16
Date Tested:	2014-10-16
Date Completed:	2014-10-22

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21244-37	21244-38	21244-39	21244-40
Suspended Solids (SS), mg/L	8.9	8.2	10.3	13.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.80	2.47	2.98	2.41
Cadmium (Cd), µg/L	0.3	0.4	0.5	0.3
Chromium (Cr), μg/L	2.9	2.4	2.2	3.0
Copper (Cu), μg/L	5.2	7.2	7.6	5.0
Mercury (Hg), μg/L	<0.2	0.3	0.2	0.2
Nickel (Ni), μg/L	2.9	2.9	2.5	1.1
Lead (Pb), μg/L	0.9	1.0	1.3	1.5
Silver (Ag), μg/L	<0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	11.0	14.0	18.3	16.5

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

21264 Laboratory No.: Date of Issue: 2014-10-23 Date Received: 2014-10-18

Date Tested: Date Completed: 2014-10-18 2014-10-23

ATTN:

Miss Mei Ling Tang

Page:

1 of 5

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/141018

Sampling Date : 2014-10-18

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)	`	*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

21264 Laboratory No.: 2014-10-23 Date of Issue: Date Received: 2014-10-18 Date Tested: 2014-10-18 2014-10-23 Date Completed:

Page:

2 of 5

Results:				I		
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21264-1	21264-2	21264-3	21264-4	21264-5	21264-6
Suspended Solids (SS), mg/L	8.7	8.9	5.3	5.0	6.1	7.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.28	5.40	5.85	5.96	3.98	3.62
Cadmium (Cd), μg/L	0.5	0.5	0.2	0.2	0.3	0.2
Chromium (Cr), μg/L	2.0	2.2	1.2	1.2	2.0	1.7
Copper (Cu), µg/L	7.4	7.6	6.0	7.2	5.6	5.9
Mercury (Hg), μg/L	0.2	0.3	0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	2.3	2.2	2.7	1.8	1.2	1.3
Lead (Pb), µg/L	1.5	1.6	0.5	1.2	0.8	1.1
Silver (Ag), μg/L	0.2	0.2	< 0.2	<0.2	<0.2	0.2
Zinc (Zn), µg/L	22.2	20.2	15.9	18.2	14.3	16.0

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21264-7	21264-8	21264-9	21264-10	21264-11	21264-12
Suspended Solids (SS), mg/L	7.1	4.6	4.3	5.2	2.6	2.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.22	2.24	4.47	2.68	5.05	5.18
Cadmium (Cd), μg/L	<0.1	0.1	<0.1	0.5	0.1	0.2
Chromium (Cr), μg/L	2.0	1.2	2.1	2.8	2.2	1.6
Copper (Cu), µg/L	6.4	6.4	6.4	5.2	6.2	5.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.6	1.6	2.2	1.4	2.6	2.6
Lead (Pb), μg/L	1.1	1.2	1.2	0.6	0.8	0.7
Silver (Ag), μg/L	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	22.0	21.7	8.1	15.1	12.2	9.1

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

 Laboratory No.:
 21264

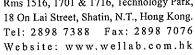
 Date of Issue:
 2014-10-23

 Date Received:
 2014-10-18

 Date Tested:
 2014-10-18

 Date Completed:
 2014-10-23

Page:


3 of 5

Results:

Results:						
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21264-13	21264-14	21264-15	21264-16	21264-17	21264-18
Suspended Solids (SS), mg/L	6.5	5.3	5.1	2.6	4.5	4.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.91	5.09	4.96	5.19	5.42	5.21
Cadmium (Cd), μg/L	0.1	0.3	0.4	0.1	0.3	0.5
Chromium (Cr), μg/L	2.2	2.9	2.1	2.7	2.8	2.4
Copper (Cu), µg/L	7.5	7.9	5,5	6.3	6.3	5.6
Mercury (Hg), μg/L	<0.2	0.2	<0.2	<0.2	<0.2	0.3
Nickel (Ni), μg/L	2.0	2.5	1.0	2.2	1.7	2.6
Lead (Pb), μg/L	0.9	0.5	0.6	1.0	1.0	0.8
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	0.2	<0.2
Zinc (Zn), μg/L	21.3	16.3	16.8	10.8	16.1	19.4

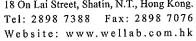
Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21264-19	21264-20	21264-21	21264-22	21264-23	21264-24
Suspended Solids (SS), mg/L	3.6	7.4	8.8	9.2	5.2	5.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.27	5.19	5.26	5.35	5.84	5.88
Cadmium (Cd), μg/L	0.2	0.4	0.5	0.5	0.2	0.2
Chromium (Cr), µg/L	2.9	2.3	2.0	2.2	1.2	1.2
Copper (Cu), µg/L	7.3	6.4	7.2	7.5	5.7	7.0
Mercury (Hg), μg/L	0.2	0.3	0.2	0.3	0.2	<0.2
Nickel (Ni), μg/L	1.6	3.0	2.2	2.2	2.7	1.9
Lead (Pb), μg/L	1.3	1.2	1.5	1.6	0.5	1.2
Silver (Ag), μg/L	0.2	0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), µg/L	14.2	22.9	22.0	20.3	16.0	18.0

Remarks: 1) <= less than

21264 Laboratory No.: 2014-10-23 Date of Issue: Date Received: 2014-10-18 2014-10-18 Date Tested: 2014-10-23 Date Completed:

Page:

4 of 5


Regulter

Results:					*****	7376 1
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21264-25	21264-26	21264-27	21264-28	21264-29	21264-30
Suspended Solids (SS), mg/L	6.0	6.9	7.3	4.6	4.4	5.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.08	3.50	3.17	2.18	4.44	2.68
Cadmium (Cd), μg/L	0.3	0.2	<0.1	0.1	<0.1	0.5
Chromium (Cr), μg/L	2.1	1.7	2.0	1.2	2.0	2.8
Copper (Cu), μg/L	5.6	6.1	6.4	6.4	6.4	5.1
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.2	1.4	1.5	1.5	2.3	1.4
Lead (Pb), μg/L	0.8	1.0	1.1	1.2	1.2	0.5
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2	0.2	<0.2
Zinc (Zn), μg/L	14.5	15.3	22.2	21.4	8.3	15.3

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21264-31	21264-32	21264-33	21264-34	21264-35	21264-36
Suspended Solids (SS), mg/L	2.6	2.4	6.7	5.1	5.2	2.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.91	5.13	4.98	4.90	4.99	5.29
Cadmium (Cd), µg/L	0.1	0.2	0.1	0.3	0.4	0.1
Chromium (Cr), μg/L	2.1	1.6	2.1	2.8	2.1	2.7
Copper (Cu), µg/L	5.9	5.1	7.3	7.6	5.4	6.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	0.2	<0.2	< 0.2
Nickel (Ni), μg/L	2.5	2.6	2.1	2.5	1.0	2.0
Lead (Pb), μg/L	0.8	0.7	0.9	0.5	0.5	1.0
Silver (Ag), μg/L	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2
Zinc (Zn), µg/L	12.4	9.2	21.7	16.7	16.9	10.6

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

 Laboratory No.:
 21264

 Date of Issue:
 2014-10-23

 Date Received:
 2014-10-18

 Date Tested:
 2014-10-18

 Date Completed:
 2014-10-23

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21264-37	21264-38	21264-39	21264-40
Suspended Solids (SS), mg/L	4.6	4.3	3.7	7.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.35	5.32	5.12	5.12
Cadmium (Cd), µg/L	0.3	0.5	0.2	0.4
Chromium (Cr), μg/L	2.9	2.4	2.9	2.2
Copper (Cu), μg/L	6.4	5.6	7.3	6.1
Mercury (Hg), μg/L	<0.2	0.3	0.2	0.3
Nickel (Ni), μg/L	1.7	2.6	1.6	2.9
Lead (Pb), μg/L	1.0	0.8	1.2	1.2
Silver (Ag), μg/L	0.2	<0.2	0.2	0.2
Zinc (Zn), µg/L	15.9	19.3	14.0	23.1

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21267
Date of Issue:	2014-10-24
Date Received:	2014-10-20
Date Tested:	2014-10-20
Date Completed:	2014-10-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 5

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

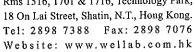
Custody No.

: MA11017/141020

Sampling Date : 2014-10-20

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L


Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

 Laboratory No.:
 21267

 Date of Issue:
 2014-10-24

 Date Received:
 2014-10-20

 Date Tested:
 2014-10-20

 Date Completed:
 2014-10-24

Page:

2 of 5

Results:

Results:			1110	3372 -	W4-a	W4-a
Sample ID	W1-a	W2-a	W3-a	W3-a		
Sampling Depth	M	M	S	В	S	<u>M</u>
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21267-1	21267-2	21267-3	21267-4	21267-5	21267-6
Suspended Solids (SS), mg/L	8.8	10.6	4.8	9.3	5.9	6.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.37	3.50	3.44	3.52	0.34	0.35
Cadmium (Cd), μg/L	0.4	0.3	0.3	0.2	<0.1	0.3
Chromium (Cr), μg/L	1.9	2.4	1.5	2.0	2.7	2.1
Copper (Cu), µg/L	7.2	7.0	7.9	5.9	5.9	7.6
Mercury (Hg), μg/L	0.3	0.3	<0.2	0.2	0.3	0.2
Nickel (Ni), μg/L	2.4	2.0	1.2	1.1	2.7	1.1
Lead (Pb), µg/L	1.4	1.0	0.7	1.1	1.0	0.8
Silver (Ag), μg/L	0.2	0.2	<0.2	0.2	<0.2	0.2
Zinc (Zn), µg/L	14.2	20.2	18.2	11.5	15.7	13.6

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21267-7	21267-8	21267-9	21267-10	21267-11	21267-12
Suspended Solids (SS), mg/L	3.8	4.0	3.5	5.1	5.0	4.8
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.35	0.36	0.35	0.36	2.63	2.56
Cadmium (Cd), µg/L	0.1	<0.1	0.2	0.4	0.4	0.2
Chromium (Cr), μg/L	1.8	2.2	1.2	2.8	1.3	2.8
Copper (Cu), µg/L	7.2	5.6	6.7	7.7	5.9	7.3
Mercury (Hg), μg/L	0.2	0.3	0.2	<0.2	<0.2	< 0.2
Nickel (Ni), μg/L	1.7	1.6	2.9	1.2	1.3	1.3
Lead (Pb), μg/L	0.6	1.5	0.8	1.0	0.7	0.8
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), µg/L	8.0	14.8	14.0	17.7	16.6	14.3

Remarks: 1) \leq = less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

21267 Laboratory No.: 2014-10-24 Date of Issue: 2014-10-20 Date Received: 2014-10-20 Date Tested: 2014-10-24 Date Completed:

Page:

3 of 5

Dogulter

Results:						<u></u>
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21267-13	21267-14	21267-15	21267-16	21267-17	21267-18
Suspended Solids (SS), mg/L	9.3	5.1	7.2	7.8	9.9	6.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.47	2.52	2.12	2.12	2.12	2.12
Cadmium (Cd), μg/L	0.3	0.4	0.5	0.2	0.2	0.5
Chromium (Cr), µg/L	2.0	1.5	1.9	1.2	2.7	2.6
Copper (Cu), μg/L	5.8	6.5	5.2	6.1	4.9	7.3
Mercury (Hg), μg/L	<0.2	0.2	0.2	0.2	<0.2	0.2
Nickel (Ni), μg/L	2.6	1.8	2.5	1.9	1.3	2.6
Lead (Pb), μg/L	0.7	0.8	0.7	0.6	1.6	1.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	17.3	18.9	15.2	10.5	19.8	19.9

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21267-19	21267-20	21267-21	21267-22	21267-23	21267-24
Suspended Solids (SS), mg/L	8.1	8.8	8.8	10.8	4.8	9.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.12	2.12	3.37	3.41	3.54	3.46
Cadmium (Cd), μg/L	0.4	0.4	0.4	0.3	0.3	0.2
Chromium (Cr), μg/L	2.2	2.7	1.9	2.4	1.5	2.0
Copper (Cu), µg/L	7.9	5.8	7.3	6.9	7.7	5.9
Mercury (Hg), μg/L	0.2	0.3	0.3	0.3	<0.2	0.2
Nickel (Ni), μg/L	1.1	2.6	2.4	2.1	1.3	1.1
Lead (Pb), μg/L	1.0	1,4	1.4	1.1	0.8	1.1
Silver (Ag), μg/L	0.2	<0.2	0.2	0.2	<0.2	0.2
Zinc (Zn), μg/L	18.1	20.2	13.9	19.6	18.1	10.9

Remarks: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21267

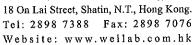
 Date of Issue:
 2014-10-24

 Date Received:
 2014-10-20

 Date Tested:
 2014-10-20

 Date Completed:
 2014-10-24

Page:


4 of 5

Results:

Results:						
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21267-25	21267-26	21267-27	21267-28	21267-29	21267-30
Suspended Solids (SS), mg/L	5.9	6.4	3.8	4.1	3.5	5.1
Nitrate-nitrogen (NO ₃ -N), mg	0.34	0.35	0.36	0.37	0.35	0.36
NO ₃ -N/L			0.1	<0.1	0.2	0.4
Cadmium (Cd), μg/L	<0.1	0.3	0.1	<0.1		
Chromium (Cr), μg/L	2.6	2.2	1.8	2.2	1.2	2.8
Copper (Cu), μg/L	5.9	7.7	7.2	5.6	6.7	7.7
Mercury (Hg), μg/L	0.3	0.2	0.2	0.3	0.2	<0.2
Nickel (Ni), μg/L	2.6	1.1	1.6	1.6	2.9	1.2
Lead (Pb), μg/L	0.9	0.8	0.6	1.5	0.8	1.0
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	15.4	13.3	7.9	15.4	14.3	17.8

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21267-31	21267-32	21267-33	21267-34	21267-35	21267-36
Suspended Solids (SS), mg/L	4.8	4.6	9.6	5.2	6.9	7.7
Nitrate-nitrogen (NO ₃ -N), mg	2.56	2.34	2.67	2.61	2.12	2.12
Cadmium (Cd), μg/L	0.4	0.2	0.3	0.4	0.5	0.2
Chromium (Cr), μg/L	1.4	2.8	2.0	1.5	1.8	1.2
Copper (Cu), µg/L	5.8	7.3	5,6	6.4	5.4	6.0
Mercury (Hg), μg/L	<0.2	<0.2	0.2	0.2	0.2	<0.2
Nickel (Ni), μg/L	1.3	1.3	2.5	1.8	2.4	1.9
Lead (Pb), μg/L	0.7	0.8	0.7	0.8	0.7	0.6
Silver (Ag), μg/L	<0.2	0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	17.2	14.8	17.9	19.3	14.8	10.7

Remarks: 1) <= less than

Laboratory No.:	21267
Date of Issue:	2014-10-24
Date Received:	2014-10-20
Date Tested:	2014-10 - 20
Date Completed:	2014-10-24

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21267-37	21267-38	21267-39	21267-40
Suspended Solids (SS), mg/L	9.6	6.8	8.1	8.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.12	2.12	2.12	2.12
Cadmium (Cd), μg/L	0.2	0.5	0.4	0.5
Chromium (Cr), µg/L	2.7	2.5	2.2	2.7
Copper (Cu), µg/L	4.8	7.5	8.1	5.5
Mercury (Hg), μg/L	<0.2	0.2	<0.2	0.3
Nickel (Ni), μg/L	1.3	2.5	1.2	2.7
Lead (Pb), μg/L	1.6	1.6	0.9	1.4
Silver (Ag), μg/L	<0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	19.6	20.2	18.1	20.0

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Cinotech Consultants Limited APPLICANT:

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21287
Date of Issue:	2014-10-28
Date Received:	2014-10-22
Date Tested:	2014-10-22
Date Completed:	2014-10-28

1 of 5

ATTN:

Miss Mei Ling Tang

Page: : 40 liquid samples as received by customer said to be water

Project No.

Sample Description

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No. : MA11017/141022

Sampling Date : 2014-10-22

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L_
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

TEST REPORT

 Laboratory No.:
 21287

 Date of Issue:
 2014-10-28

 Date Received:
 2014-10-22

 Date Tested:
 2014-10-22

 Date Completed:
 2014-10-28

Page:

2 of 5

Results:

Results:				r		I
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21287-1	21287-2	21287-3	21287-4	21287-5	21287-6
Suspended Solids (SS), mg/L	12.6	15.4	10.6	8.9	10.9	10.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.00	0.99	0.98	0.99	0.42	0.42
Cadmium (Cd), μg/L	0.4	0.5	<0.1	0.1	0.3	0.4
Chromium (Cr), μg/L	2.2	2.1	1.3	1.6	1.6	2.8
Copper (Cu), µg/L	6.5	6.7	5.6	5.2	5.4	6.2
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.8	2.5	2.2	2.8	1.9	2.0
Lead (Pb), μg/L	1.2	1.0	1.1	1.0	0.8	1.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	19.1	21.4	10.9	14.4	11.8	20.7

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21287-7	21287-8	21287-9	21287-10	21287-11	21287-12
Suspended Solids (SS), mg/L	13.4	10.3	12.1	10.2	11.6	14.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.42	0.42	0.42	0.42	0.82	0.67
Cadmium (Cd), μg/L	0.4	0.1	0.2	0.1	0.1	<0.1
Chromium (Cr), µg/L	2.0	2.3	2.9	1.0	2.6	1.0
Copper (Cu), µg/L	7.1	6.5	5.4	7.4	7.8	7.7
Mercury (Hg), μg/L	< 0.2	<0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	3.0	1.9	2.3	1.9	1.6	2.3
Lead (Pb), μg/L	0.6	0.7	1.1	1.4	1.4	1.3
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	23.1	22.6	12.9	17.2	10.3	18.1

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21287

 Date of Issue:
 2014-10-28

 Date Received:
 2014-10-22

 Date Tested:
 2014-10-22

 Date Completed:
 2014-10-28

Page:

3 of 5

Results:

Results:						
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21287-13	21287-14	21287-15	21287-16	21287-17	21287-18
Suspended Solids (SS), mg/L	15.1	15.4	5.4	10.5	7.7	6.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.70	0.70	0.26	0.27	0.27	0.27
Cadmium (Cd), μg/L	0.2	0.1	<0.1	0.1	0.4	0.1
Chromium (Cr), μg/L	1.3	1.0	1.6	2.5	1.6	2.7
Copper (Cu), μg/L	6.1	6.2	7.1	5.5	6.2	8.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	0.2	< 0.2	0.2
Nickel (Ni), μg/L	2.4	2.9	2.2	1.4	2.3	2.3
Lead (Pb), μg/L	0.8	0.7	1.0	0.5	0.8	1.2
Silver (Ag), μg/L	<0.2	<0.2	0.2	<0.2	< 0.2	<0.2
Zinc (Zn), μg/L	15.2	20.5	18.3	15.1	13.6	9.1

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21287-19	21287-20	21287-21	21287-22	21287-23	21287-24
Suspended Solids (SS), mg/L	13.9	16.7	12.5	15.4	10.3	9.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.27	0.27	0.98	0.94	0.97	0.97
Cadmium (Cd), μg/L	0.1	0.5	0.4	0.5	<0.1	0.1
Chromium (Cr), μg/L	2.7	2.2	2.1	2.0	1.3	1.6
Copper (Cu), μg/L	5.7	6.5	6.7	6.6	5.4	5.0
Mercury (Hg), μg/L	0.3	<0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.0	2.6	2.7	2.5	2.2	2.8
Lead (Pb), μg/L	1.1	1.3	1.2	1.0	1.2	1.0
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	22.4	20.4	18.8	20.5	10.9	14.1

Remarks: 1) <= less than

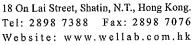
2) S = Surface, M = Middle, B = Bottom

Laboratory No.: 21287 2014-10-28 Date of Issue: Date Received: 2014-10-22 Date Tested: 2014-10-22 2014-10-28 Date Completed:

Page:

4 of 5

Results:


Results:						
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21287-25	21287-26	21287-27	21287-28	21287-29	21287-30
Suspended Solids (SS), mg/L	10.9	9.6	13.7	10.4	12.6	10.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.43	0.40	0.43	0.42	0.42	0.43
Cadmium (Cd), μg/L	0.3	0.4	0.4	0.1	0.2	0.1
Chromium (Cr), µg/L	1.5	2.8	2.0	2.4	2.9	1.1
Copper (Cu), µg/L	5.3	6.1	7.0	6.3	5.5	7.4
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	1.9	2.0	3.0	1,9	2.3	1.8
Lead (Pb), μg/L	0.8	1.2	0.6	0.8	1.1	1.4
Silver (Ag), μg/L	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	11.9	20.9	22.4	21.9	13.1	17.2

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21287-31	21287-32	21287-33	21287-34	21287-35	21287-36
Suspended Solids (SS), mg/L	11.5	14.6	15.3	15.5	5.5	10.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.83	0.69	0.69	0.68	0.25	0.28
Cadmium (Cd), μg/L	0.1	<0.1	0.2	0.1	<0.1	0.1
Chromium (Cr), µg/L	2.6	1.0	1.3	1.0	1.6	2.6
Copper (Cu), µg/L	7.8	7.7	5.9	6.0	6.8	5.4
Mercury (Hg), μg/L	<0.2	< 0.2	<0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	1.6	2.2	2.3	2.9	2.2	1.4
Lead (Pb), μg/L	1.4	1.3	0.8	0.7	1.0	0.5
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.1	17.8	15.1	21.4	18.0	14.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

	Commence of the commence of th
Laboratory No.:	21287
Date of Issue:	2014-10 - 28
Date Received:	2014-10-22
Date Tested:	2014-10-22
Date Completed:	2014-10-28

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21287-37	21287-38	21287-39	21287-40
Suspended Solids (SS), mg/L	7.5	6.2	13.5	16.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.27	0.27	0.27	0.26
Cadmium (Cd), μg/L	0.4	0.1	0.1	0.5
Chromium (Cr), µg/L	1.5	2.7	2.6	2.2
Copper (Cu), μg/L	6.1	8.4	5.7	6.2
Mercury (Hg), μg/L	<0.2	0.2	0.3	<0.2
Nickel (Ni), μg/L	2.2	2.3	1.9	2.6
Lead (Pb), μg/L	8.0	1.2	1.1	1.3
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	13.7	8.9	22.7	19.9

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Cinotech Consultants Limited APPLICANT:

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

	www.lib.linkin.mi.walin.com/min.min.min.min.min.min.min.min.min.min.
Laboratory No.:	21300
Date of Issue:	2014-10-30
Date Received:	2014-10-24
Date Tested:	2014-10-24
Date Completed:	2014-10-30

1 of 5

ATTN:

Miss Mei Ling Tang

Page: : 40 liquid samples as received by customer said to be water

Project No.

Sample Description

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

: MA11017/141024

Sampling Date: 2014-10-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

TEST REPORT

 Laboratory No.:
 21300

 Date of Issue:
 2014-10-30

 Date Received:
 2014-10-24

 Date Tested:
 2014-10-24

 Date Completed:
 2014-10-30

Page:

2 of 5

Results:

Results:			 	I	I	
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21300-1	21300-2	21300-3	21300-4	21300-5	21300-6
Suspended Solids (SS), mg/L	7.6	5.6	3.7	3.8	3.6	3.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.20	5.57	5.33	5.42	3.89	3.77
Cadmium (Cd), μg/L	0.5	0.5	0.4	0.3	0.1	0.2
Chromium (Cr), μg/L	2.5	2.4	2.4	1.0	2.0	2.8
Copper (Cu), µg/L	7.9	7.7	5.8	7.3	7.0	6.2
Mercury (Hg), μg/L	0.3	0.2	<0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	2.8	2.8	1.2	2.3	1.2	2.1
Lead (Pb), μg/L	1.5	1.6	1.6	1.3	1.0	1.0
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	< 0.2	<0.2
Zinc (Zn), µg/L	16.4	21.1	18.6	18.3	22.4	13.7

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21300-7	21300-8	21300-9	21300-10	21300-11	21300-12
Suspended Solids (SS), mg/L	4.3	3.0	1.3	5.1	2.6	3.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.82	3.62	3.88	3.69	4.92	4.95
Cadmium (Cd), μg/L	0.1	0.1	< 0.1	0.1	0.3	0.3
Chromium (Cr), μg/L	2.9	2.6	1.4	3.0	1.1	1.8
Copper (Cu), µg/L	5.5	7.5	5.9	6.3	5.9	6.1
Mercury (Hg), μg/L	<0.2	0.2	0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	2.6	2.5	1.7	1.9	1.9	1.4
Lead (Pb), μg/L	0.5	0.6	0.8	0.6	0.9	1.4
Silver (Ag), μg/L	<0.2	0.2	<0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.6	15.9	14.4	15.6	10.0	17.9

Remarks: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21300

 Date of Issue:
 2014-10-30

 Date Received:
 2014-10-24

 Date Tested:
 2014-10-24

 Date Completed:
 2014-10-30

Page:

3 of 5

Results:

Results:					•	
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21300-13	21300-14	21300-15	21300-16	21300-17	21300-18
Suspended Solids (SS), mg/L	4.0	3.6	4.3	5.3	3.6	3.8
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.21	5.44	3.63	4.10	4.05	4.04
Cadmium (Cd), μg/L	<0.1	0.1	0.2	0.1	0.1	0.5
Chromium (Cr), μg/L	2.9	2.8	2.6	1.8	2.2	2.8
Copper (Cu), µg/L	7.9	6.1	5.4	5.8	6.9	7.8
Mercury (Hg), μg/L	0.2	0.2	0.2	<0.2	<0.2	0.2
Nickel (Ni), µg/L	2.2	2.0	1.3	1.8	2.9	2.7
Lead (Pb), μg/L	0.6	1.0	0.6	0.6	0.9	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	15.6	8.8	21.2	20.5	16.3	22.1

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21300-19	21300-20	21300-21	21300-22	21300-23	21300-24
Suspended Solids (SS), mg/L	4.0	5.0	7.5	5.6	3.6	3.8
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.68	3.58	5.17	5.72	5.16	5.19
Cadmium (Cd), μg/L	0.3	0.4	0.5	0.5	0.4	0.3
Chromium (Cr), µg/L	3.1	2.9	2.5	2.3	2.4	1.0
Copper (Cu), μg/L	5.7	5.5	7.9	7.5	5.8	7.2
Mercury (Hg), μg/L	0.3	0.2	0.3	0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.2	2.4	2.8	2.7	1.2	2.2
Lead (Pb), μg/L	1.5	0.9	1.5	1.6	1.5	1.3
Silver (Ag), μg/L	0.2	<0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	16.8	10.8	16.0	20.2	18.3	17.5

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Laboratory No.: 21300 2014-10-30 Date of Issue: 2014-10-24 Date Received: Date Tested: 2014-10-24 2014-10-30 Date Completed:

Page:

4 of 5

Results:						I
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21300-25	21300-26	21300-27	21300-28	21300-29	21300-30
Suspended Solids (SS), mg/L	3.6	2.9	4.2	3.1	1.3	5.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.84	3.70	3.82	3.63	3.74	3.60
Cadmium (Cd), μg/L	0.1	0.2	0.1	0.1	<0.1	0.1
Chromium (Cr), μg/L	2.0	2.8	2.9	2.6	1.4	3.0
Copper (Cu), μg/L	6.8	6.3	5.5	7.7	6.0	6.3
Mercury (Hg), μg/L	<0.2	0.2	<0.2	0.2	0.2	<0.2
Nickel (Ni), μg/L	1.2	2.1	2.6	2.4	1.7	1.9
Lead (Pb), μg/L	1.0	1.0	0.5	0.6	0.8	0.6
Silver (Ag), μg/L	<0.2	<0.2	< 0.2	0.2	<0.2	0.2
Zinc (Zn), μg/L	22.2	13.6	21.0	16.1	14.3	15.7

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21300-31	21300-32	21300-33	21300-34	21300-35	21300-36
Suspended Solids (SS), mg/L	2.5	3.8	3.9	3.7	4.3	5.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.98	4.88	5.01	5.26	3.59	3.98
Cadmium (Cd), μg/L	0.3	0.3	<0.1	0.1	0.2	0.1
Chromium (Cr), μg/L	1.1	1.9	2.9	2.8	2.6	1.8
Copper (Cu), μg/L	5.9	6.2	7.6	5.8	5.5	5.5
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	0.2	<0.2
Nickel (Ni), μg/L	1.8	1.4	2.3	2.0	1.3	1.8
Lead (Pb), μg/L	0.9	1.4	0.6	1.0	0.6	0.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	9.8	17.9	16.0	9.2	20.7	20.0

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21300

 Date of Issue:
 2014-10-30

 Date Received:
 2014-10-24

 Date Tested:
 2014-10-24

 Date Completed:
 2014-10-30

Page:

5 of 5

Results:

resuits:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21300-37	21300-38	21300-39	21300-40
Suspended Solids (SS), mg/L	3.5	3.9	4.1	5.0
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.95	3.90	3.76	3.44
Cadmium (Cd), µg/L	0.1	0.5	0.3	0.4
Chromium (Cr), μg/L	2.2	2.8	3.0	2.9
Copper (Cu), µg/L	6.8	8.0	5.6	5.6
Mercury (Hg), μg/L	<0.2	0.3	0.3	0.2
Nickel (Ni), μg/L	2.8	2.7	2.2	2.3
Lead (Pb), μg/L	0.9	1.4	1.4	0.9
Silver (Ag), μg/L	0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	16.2	22.1	16.5	10.8

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

	Comments of the Comment of the Comme	annada (antisar)
Laboratory No.:	21307	
Date of Issue:	2014-10-31	
Date Received:	2014-10 - 27	
Date Tested:	2014-10-27	
Date Completed:	2014-10-31	

1 of 5

ATTN: Miss Mei Ling Tang

on : 40 liquid samples as received by customer said to be water

Sample Description : 40 liquid s Project No. : MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Page:

Custody No. : MA11017/141027 Sampling Date : 2014-10-27

Test Requested & Methodology:

Item	Parameters Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 21307

 Date of Issue:
 2014-10-31

 Date Received:
 2014-10-27

 Date Tested:
 2014-10-27

 Date Completed:
 2014-10-31

Page:

2 of 5

Results:

Results:						
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21307-1	21307-2	21307-3	21307-4	21307-5	21307-6
Suspended Solids (SS), mg/L	12.3	11.4	8.1	8.7	8.8	8.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.54	2.46	2.67	2.59	0.16	0.17
Cadmium (Cd), μg/L	0.4	0.4	0.4	0.3	0.1	0.3
Chromium (Cr), μg/L	2.9	2.8	1.9	1.9	1.7	1.9
Copper (Cu), µg/L	6.6	7.4	6.0	6.3	6.2	7.7
Mercury (Hg), μg/L	0.3	0.3	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	3.0	2.0	1.6	1.1	1.8	2.1
Lead (Pb), μg/L	0.9	1.2	0.7	1.1	0.8	1.2
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	0.2	<0.2
Zinc (Zn), μg/L	22.1	20.6	21.4	14.2	10.6	12.9

Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21307-7	21307-8	21307-9	21307-10	21307-11	21307-12
Suspended Solids (SS), mg/L	11.6	12.2	10.9	7.5	8.7	7.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.17	0.16	0.16	0.16	2.22	2.19
Cadmium (Cd), μg/L	0.4	0.4	0.5	0.4	0.2	0.3
Chromium (Cr), µg/L	2.2	2.5	2.8	2.3	1.3	2.3
Copper (Cu), µg/L	5.2	5.1	7.9	7.1	7.4	5.8
Mercury (Hg), μg/L	0.2	0.2	0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.6	1.2	2.3	2.4	1.3	2.3
Lead (Pb), μg/L	0.8	0.9	1.4	0.6	0.9	0.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	15.5	21.0	15.0	11.3	17.8	9.1

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

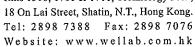
TEST REPORT

21307 Laboratory No.: Date of Issue: 2014-10-31 Date Received: 2014-10-27 Date Tested: 2014-10-27 Date Completed: 2014-10-31

Page:

3 of 5

Results:


Results:		1	,			
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21307-13	21307-14	21307-15	21307-16	21307-17	21307-18
Suspended Solids (SS), mg/L	7.9	11.4	11.9	10.8	7.3	11.2
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.29	1.85	1.41	1.42	1.43	1.41
Cadmium (Cd), μg/L	0.5	<0.1	0.1	<0.1	<0.1	0.5
Chromium (Cr), μg/L	1.9	2.2	2.6	2.1	2.9	2.6
Copper (Cu), μg/L	5.4	7.4	6.0	5.7	5.3	5.7
Mercury (Hg), μg/L	0.2	0.2	0.2	<0.2	<0.2	0.3
Nickel (Ni), μg/L	1.7	1.8	1.0	1.7	2.9	3.0
Lead (Pb), μg/L	0.8	1.4	1.4	1.5	0.7	0.9
Silver (Ag), μg/L	0.2	<0.2	<0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	9.3	17.5	11.1	17.4	13.9	11.2

Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	M	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21307-19	21307-20	21307-21	21307-22	21307-23	21307-24
Suspended Solids (SS), mg/L	5.5	11.9	12.7	11.4	8.0	8.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.41	1.41	2.50	2.49	2.66	2.48
Cadmium (Cd), μg/L	0.3	0.4	0.4	0.4	0.4	0.3
Chromium (Cr), μg/L	2.0	2.7	2.8	2.9	1.9	1.9
Copper (Cu), μg/L	7.8	6.8	6.7	7.2	5.9	6.4
Mercury (Hg), μg/L	0.2	0.2	0.3	0.3	<0.2	<0.2
Nickel (Ni), μg/L	2.5	2.8	3.0	2.0	1.6	1.2
Lead (Pb), μg/L	1.1	1.5	1.0	1.1	0.7	1.1
Silver (Ag), μg/L	0.2	<0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	14,6	19.7	22.7	20.2	21.0	14.0

Remarks: 1) \leq less than

2) S = Surface, M = Middle, B = Bottom

 Laboratory No.:
 21307

 Date of Issue:
 2014-10-31

 Date Received:
 2014-10-27

 Date Tested:
 2014-10-27

 Date Completed:
 2014-10-31

Page:

4 of 5

Results:

Results:						····
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21307-25	21307-26	21307-27	21307-28	21307-29	21307-30
Suspended Solids (SS), mg/L	9.0	8.5	11.0	12.1	9.9	7.4
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.16	0.17	0.17	0.16	0.16	0.16
Cadmium (Cd), μg/L	0.1	0.3	0.4	0.4	0.5	0.4
Chromium (Cr), µg/L	1.7	1.8	2.2	2.6	2.7	2.2
Copper (Cu), µg/L	6.3	7.6	5.1	5.1	7.4	6.8
Mercury (Hg), μg/L	<0.2	<0.2	0.2	0.2	0.3	<0.2
Nickel (Ni), μg/L	1.8	2.1	1.6	1.1	2.2	2.4
Lead (Pb), μg/L	0.8	1.2	0.8	0.9	1.4	0.6
Silver (Ag), μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.4	12.9	15.7	21.4	14.5	11.3

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21307-31	21307-32	21307-33	21307-34	21307-35	21307-36
Suspended Solids (SS), mg/L	9.0	7.5	8.0	11.5	12.1	10.9
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.28	2.11	2.31	1.82	1.41	1.42
Cadmium (Cd), µg/L	0.2	0.3	0.5	< 0.1	0.1	<0.1
Chromium (Cr), µg/L	1.4	2.3	1.8	2.2	2.6	2.2
Copper (Cu), µg/L	7.4	5.7	5.3	7.5	6.0	5.5
Mercury (Hg), μg/L	<0.2	<0.2	0.2	<0.2	0.2	<0.2
Nickel (Ni), μg/L	1.3	2.2	1.7	1.8	1.0	1.7
Lead (Pb), μg/L	0.9	0.6	0.8	1.3	1.5	1.4
Silver (Ag), μg/L	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	18.0	9.2	9.6	16.5	11.2	17.9

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 21307

 Date of Issue:
 2014-10-31

 Date Received:
 2014-10-27

 Date Tested:
 2014-10-27

 Date Completed:
 2014-10-31

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21307-37	21307-38	21307-39	21307-40
Suspended Solids (SS), mg/L	7.5	11.0	5.4	12.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.42	1.41	1.41	1.41
Cadmium (Cd), μg/L	<0.1	0.4	0.3	0.4
Chromium (Cr), µg/L	2.9	2.6	1.9	2.7
Copper (Cu), µg/L	5.5	6.0	7.7	7.1
Mercury (Hg), μg/L	<0.2	0.3	0.2	0.2
Nickel (Ni), μg/L	2.8	3.0	2.6	2.7
Lead (Pb), μg/L	0.7	0.9	1,1	1.5
Silver (Ag), μg/L	0.2	0.2	0.2	<0.2
Zinc (Zn), μg/L	13.9	11.1	14.4	19.9

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	21313
Date of Issue:	2014-11-05
Date Received:	2014-10-30
Date Tested:	2014-10 - 30
Date Completed:	2014-11-05

1 of 5

ATTN:

Miss Mei Ling Tang

Page:

Sample Description

: 40 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name : Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

: MA11017/141030 Custody No. Sampling Date : 2014-10-30

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L
2	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L
3	Cadmium (Cd)	In-house Method SOP 053 (ICP-AES) and	*0.1 μg/L
4	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L
5	Copper (Cu)		*0.2 μg/L
6	Mercury (Hg)		*0.2 μg/L
7	Nickel (Ni)		*0.2 μg/L
8	Lead (Pb)		*0.2 μg/L
9	Silver (Ag)		*0.2 μg/L
10	Zinc (Zn)		*0.4 μg/L

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

 Laboratory No.:
 21313

 Date of Issue:
 2014-11-05

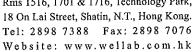
 Date Received:
 2014-10-30

 Date Tested:
 2014-10-30

 Date Completed:
 2014-11-05

Page:

2 of 5


Results:

Results:						77.7.4
Sample ID	W1-a	W2-a	W3-a	W3-a	W4-a	W4-a
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21313-1	21313-2	21313-3	21313-4	21313-5	21313-6
Suspended Solids (SS), mg/L	10.1	10.7	8.1	5.2	8.4	4.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.80	4.35	1.09	0.16	0.60	0.15
Cadmium (Cd), μg/L	0.5	0.4	<0.1	0.2	0.1	0.1
Chromium (Cr), μg/L	2.8	2.9	2.0	1.8	2.2	1.0
Copper (Cu), µg/L	7.7	7.4	5.9	7.8	5.8	5.0
Mercury (Hg), μg/L	0.3	0.3	0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	2.2	3.0	1.5	1.7	1.9	1.9
Lead (Pb), μg/L	1.6	1.2	0.7	1.5	0.9	0.8
Silver (Ag), μg/L	0.2	0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.7	17.3	15.6	16.6	14.5	8.6

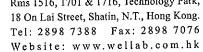
Sample ID	W4-a	W5-a	W5-a	W5-a	W1-a	W2-a
Sampling Depth	В	S	M	В	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	21313-7	21313-8	21313-9	21313-10	21313-11	21313-12
Suspended Solids (SS), mg/L	10.8	4.5	4.7	10.5	5.9	6.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.08	0.14	0.15	0.08	2.68	2.75
Cadmium (Cd), μg/L	0.2	0.5	0.2	0.2	0.3	<0.1
Chromium (Cr), μg/L	2.1	1.1	3.0	1.6	2.0	2.1
Copper (Cu), µg/L	5.2	5.7	6.7	7.4	6.1	5.1
Mercury (Hg), μg/L	0.3	0.2	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	1.4	1.7	1.8	2.6	2.9	1.5
Lead (Pb), μg/L	0.8	1.6	1.0	1.1	0.7	1.1
Silver (Ag), µg/L	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	22.5	11.4	18.4	14.5	20.5	17.2

Remarks: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

Laboratory No.: 21313 Date of Issue: 2014-11-05 2014-10-30 Date Received: 2014-10-30 Date Tested: 2014-11-05 Date Completed:

Page:


3 of 5

Results:			,			
Sample ID	W3-a	W3-a	W4-a	W4-a	W4-a	W5-a
Sampling Depth	S	В	S	M	В	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21313-13	21313-14	21313-15	21313-16	21313-17	21313-18
Suspended Solids (SS), mg/L	6.6	8.9	7.5	7.2	6.5	7.6
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.97	3.07	1.95	1.96	1.97	1.94
Cadmium (Cd), μg/L	0.2	0.1	0.3	0.2	0.3	0.5
Chromium (Cr), µg/L	1.9	2.5	2.4	1.2	1.0	2.3
Copper (Cu), μg/L	5.9	6.4	6.7	6.4	5.6	7.4
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Nickel (Ni), μg/L	2.6	1.1	1.7	2.1	1.2	3.1
Lead (Pb), μg/L	1.0	1.2	1.3	0.6	0.9	0.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	0.2
Zinc (Zn), μg/L	14.4	20.9	9.3	18.0	14.8	10.2

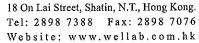
Sample ID	W5-a	W5-a	W1-b	W2-b	W3-b	W3-b
Sampling Depth	M	В	М	M	S	В
Tide	Mid-Flood	Mid-Flood	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21313-19	21313-20	21313-21	21313-22	21313-23	21313-24
Suspended Solids (SS), mg/L	8.1	9.8	10.1	10.9	8.2	5.1
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.94	1.94	4.72	4.39	1.12	0.16
Cadmium (Cd), μg/L	0.3	0.5	0.5	0.4	<0.1	0.2
Chromium (Cr), µg/L	2.5	1.3	2.7	2.8	1.9	1.8
Copper (Cu), μg/L	8.0	6.2	7.9	7.7	5.8	7.6
Mercury (Hg), μg/L	0.2	0.3	0.3	0.3	< 0.2	<0.2
Nickel (Ni), μg/L	2.6	3.0	2.2	2.9	1.6	1.6
Lead (Pb), µg/L	1.4	1.0	1.5	1.3	0.7	1.5
Silver (Ag), μg/L	<0.2	0.2	0.2	0.2	0.2	< 0.2
Zinc (Zn), μg/L	22.8	21.1	20.8	17.3	15.3	16.3

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

21313 Laboratory No.: 2014-11-05 Date of Issue: Date Received: 2014-10-30 2014-10-30 Date Tested: 2014-11-05 Date Completed:

Page:


4 of 5

Results:					77.6.1	W/C 1
Sample ID	W4-b	W4-b	W4-b	W5-b	W5-b	W5-b
Sampling Depth	S	M	В	S	M	<u>B</u>
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	21313-25	21313-26	21313-27	21313-28	21313-29	21313-30
Suspended Solids (SS), mg/L	8.5	4.5	10.8	4.6	4.8	10.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.58	0.15	0.08	0.14	0.15	0.08
Cadmium (Cd), µg/L	0.1	0.1	0.2	0.5	0.2	0.2
Chromium (Cr), μg/L	2.2	1.1	2.1	1.1	3.1	1.6
Copper (Cu), μg/L	5.8	4.8	5.3	5.7	6.8	7.2
Mercury (Hg), µg/L	<0.2	0.2	0.3	0.2	0.2	0.2
Nickel (Ni), µg/L	1.9	1.8	1.4	1.7	1.8	2.6
Lead (Pb), μg/L	1.0	0.8	0.8	1.5	0.9	1.0
Silver (Ag), µg/L	<0.2	<0.2	<0.2	<0.2	0.2	<0.2
Zinc (Zn), µg/L	13.7	8.7	22.1	11.1	18.1	14.7

Sample ID	W1-b	W2-b	W3-b	W3-b	W4-b	W4-b
Sampling Depth	M	M	S	В	S	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21313-31	21313-32	21313-33	21313-34	21313-35	21313-36
Suspended Solids (SS), mg/L	5.8	6.2	6.5	8.7	7.3	7.3
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	2.62	2.73	2.97	3.01	1.95	1.96
Cadmium (Cd), µg/L	0.3	<0.1	0.2	0.1	0.3	0.2
Chromium (Cr), μg/L	2.0	2.0	1.9	2.6	2.4	1.2
Copper (Cu), μg/L	6.2	4.9	5.7	6.2	6.4	6.5
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.8	1.5	2.5	1.1	1.8	2.0
Lead (Pb), µg/L	0.7	1.1	1.0	1.2	1.3	0.6
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	20.7	17.2	14.7	20.2	9.6	18.4

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

Laboratory No.:	21313
Date of Issue:	2014-11 - 05
Date Received:	2014-10-30
Date Tested:	2014-10-30
Date Completed:	2014-11-05

Page:

5 of 5

Results:

Results:				
Sample ID	W4-b	W5-b	W5-b	W5-b
Sampling Depth	В	S	M	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	21313-37	21313-38	21313-39	21313-40
Suspended Solids (SS), mg/L	6.5	7.5	7.9	9.7
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.97	1.93	1.94	1.94
Cadmium (Cd), μg/L	0.3	0.5	0.3	0.5
Chromium (Cr), μg/L	1.0	2.2	2.5	1.2
Copper (Cu), µg/L	5.5	7.5	7.8	6.1
Mercury (Hg), μg/L	<0.2	0.2	0.2	0.3
Nickel (Ni), μg/L	1.2	3.2	2.6	3.0
Lead (Pb), μg/L	0.9	0.6	1.4	1.0
Silver (Ag), μg/L	<0.2	0.2	<0.2	0.2
Zinc (Zn), μg/L	14.5	10.3	22.6	20.4

Remarks: 1) <= less than

2) S = Surface, M = Middle, B = Bottom

APPENDIX G QUALITY CONTROL REPORT FOR WATER QUALITY MONITORING

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21166 2014-10-09

Date Received:

2014-10-03

Date Tested:

2014-10-03

Date Completed:

2014-10-09

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Methon Diank			
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	<0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	95	99	80-120%
Nitrate-nitrogen (NO ₃ -N), %	95	94	80-120%
Cadmium (Cd), %	94	90	80-120%
Chromium (Cr), %	92	93	80-120%
Copper (Cu), %	97	95	80-120%
Mercury (Hg), %	96	94	80-120%
Nickel (Ni), %	94	95	80-120%
Lead (Pb), %	92	93	80-120%
Silver (Ag), %	98	93	80-120%
Zinc (Zn), %	93	92	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21166

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

Laboratory No.:

QC21166 2014-10-09

Date of Issue: Date Received:

2014-10-03

Date Tested:

2014-10-03 2014-10-09

Date Completed: Page:

2 of 2

Sample Spike

Parameter	21166-1 spk	21166-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	94	88	80-120%
Cadmium (Cd), %	100	99	80-120%
Chromium (Cr), %	92	96	80-120%
Copper (Cu), %	92	85	80-120%
Mercury (Hg), %	99	94	80-120%
Nickel (Ni), %	98	97	80-120%
Lead (Pb), %	87	96	80-120%
Silver (Ag), %	90	93	80-120%
Zinc (Zn), %	97	90	80-120%

Sample Duplicate

Parameter Parameter	21166-20 chk	21166-40 chk	Acceptance
Suspended Solids (SS), %	3	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	6	5	RPD≤20%
Cadmium (Cd), %	4	4	RPD≤20%
Chromium (Cr), %	5	3	RPD≤20%
Copper (Cu), %	4	3	RPD≤20%
Mercury (Hg), %	5	4	RPD≤20%
Nickel (Ni), %	4	7	RPD≤20%
Lead (Pb), %	3	3	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	6	5	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21166

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21174 2014-10-10

Date Received:

2014-10-06

Date Tested:

2014-10-06

Date Completed:

2014-10-10

Page:

1 of 2

ATTN:

Miss Mei Ling Tang

QC report: Mothod Blank

Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	< 0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	<0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1
Chromium (Cr), μg/L	< 0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), µg/L	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Mathed OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	99	93	80-120%
Nitrate-nitrogen (NO ₃ -N), %	97	94	80-120%
Cadmium (Cd), %	98	92	80-120%
Chromium (Cr), %	101	97	80-120%
Copper (Cu), %	93	91	80-120%
Mercury (Hg), %	99	90	80-120%
Nickel (Ni), %	99	95	80-120%
Lead (Pb), %	94	92	80-120%
Silver (Ag), %	93	94	80-120%
Zinc (Zn), %	96	98	80-120%

Remarks: 1) <= less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21174 *****************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

QC21174 Laboratory No.: Date of Issue: 2014-10-10 Date Received: 2014-10-06 2014-10-06 Date Tested: Date Completed: 2014-10-10

Page:

2 of 2

Sample Spike

Parameter	21174-1 spk	21174-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	96	91	80-120%
Cadmium (Cd), %	90	94	80-120%
Chromium (Cr), %	95	90	80-120%
Copper (Cu), %	90	87	80-120%
Mercury (Hg), %	90	96	80-120%
Nickel (Ni), %	90	90	80-120%
Lead (Pb), %	96	99	80-120%
Silver (Ag), %	98	94	80-120%
Zinc (Zn), %	94	93	80-120%

Sample Duplicate

Sample Duplicate			
Parameter	21174-20 chk	21174-40 chk	Acceptance
Suspended Solids (SS), %	3	4	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	7	5	RPD≤20%
Cadmium (Cd), %	N/A	N/A	RPD≤20%
Chromium (Cr), %	5	3	RPD≤20%
Copper (Cu), %	3	5	RPD≤20%
Mercury (Hg), %	5	5	RPD≤20%
Nickel (Ni), %	6	7	RPD≤20%
Lead (Pb), %	3	5	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	4	3	RPD≤20%

Remarks: 1) < = less than

2) N/A = Not applicable

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: QC21198
Date of Issue: 2014-10-14
Date Received: 2014-10-08

Date Tested: 2014-10-08 Date Completed: 2014-10-14

Page:

1 of 2

ATTN:

Miss Mei Ling Tang

QC report:

Method Blank	MD 1	MB 2	Acceptance
Parameter	MB 1		
Suspended Solids (SS), mg/L	<0.5	< 0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	<0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	< 0.2	<0.2
Copper (Cu), µg/L	<0.2	< 0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), µg/L	<0.2	<0.2	< 0.2
Zinc (Zn), μg/L	<0.4	<0.4	<0.4

Method QC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	95	98	80-120%
Nitrate-nitrogen (NO ₃ -N), %	92	94	80-120%
Cadmium (Cd), %	100	100	80-120%
Chromium (Cr), %	98	93	80-120%
Copper (Cu), %	100	96	80-120%
Mercury (Hg), %	91	90	80-120%
Nickel (Ni), %	99	98	80-120%
Lead (Pb), %	92	95	80-120%
Silver (Ag), %	94	99	80-120%
Zinc (Zn), %	93	94	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21198

3) This report is the summary of quarry control data for report number 21156

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Laboratory No.: Date of Issue:

QC21198 2014-10-14

Date Received:

2014-10-08

Date Tested:

2014-10-08

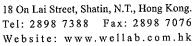
Date Completed:

2014-10-14

Page:

2 of 2

Sample Spike


Parameter	21198-1 spk	21198-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	96	98	80-120%
Cadmium (Cd), %	89	95	80-120%
Chromium (Cr), %	. 94	93	80-120%
Copper (Cu), %	97	92	80-120%
Mercury (Hg), %	93	92	80-120%
Nickel (Ni), %	92	91	80-120%
Lead (Pb), %	97	87	80-120%
Silver (Ag), %	96	95	80-120%
Zinc (Zn), %	100	94	80-120%

Sample Duplicate

Parameter Parameter	21198-20 chk	21198-40 chk	Acceptance
Suspended Solids (SS), %	3	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	7	7	RPD≤20%
Cadmium (Cd), %	4	5	RPD≤20%
Chromium (Cr), %	7	5	RPD≤20%
Copper (Cu), %	5	5	RPD≤20%
Mercury (Hg), %	N/A	N/A	RPD≤20%
Nickel (Ni), %	4	4	RPD≤20%
Lead (Pb), %	4	5	RPD≤20%
Silver (Ag), %	3	5	RPD≤20%
Zinc (Zn), %	4	5	RPD≤20%

Remarks: 1) < = less than

2) N/A = Not applicable

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

OC21205 2014-10-16

Date Received:

2014-10-10

Date Tested:

2014-10-10

Date Completed:

2014-10-16

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

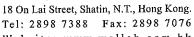
QC report: Method Blank

Method Diank			
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	< 0.01
Cadmium (Cd), µg/L	<0.1	<0.1	< 0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), µg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), µg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method OC

Method QC	MQC1	MQC2	Acceptance
Parameter	97	93	80-120%
Suspended Solids (SS), %			80-120%
Nitrate-nitrogen (NO ₃ -N), %	92	99	
Cadmium (Cd), %	91	97	80-120%
Chromium (Cr), %	94	93	80-120%
Copper (Cu), %	94	100	80-120%
Mercury (Hg), %	98	92	80-120%
Nickel (Ni), %	101	95	80-120%
Lead (Pb), %	98	99	80-120%
Silver (Ag), %	95	99	80-120%
Zinc (Zn), %	88	89	80-120%

Remarks: 1) <= less than


2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21205

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: Date of Issue:

OC21205 2014-10-16

Date Received:

2014-10-10

2014-10-10

Date Tested:

Date Completed:

2014-10-16

Page:

2 of 2

Sample Spike

Parameter Parameter	21205-1 spk	21205-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	95	93	80-120%
Cadmium (Cd), %	99	88	80-120%
Chromium (Cr), %	95	90	80-120%
Copper (Cu), %	92	94	80-120%
Mercury (Hg), %	98	87	80-120%
Nickel (Ni), %	86	88	80-120%
Lead (Pb), %	95	95	80-120%
Silver (Ag), %	100	92	80-120%
Zinc (Zn), %	90	96	80-120%

Sample Duplicate

Parameter Parameter	21205-20 chk	21205-40 chk	Acceptance
Suspended Solids (SS), %	3	4	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	4	3	RPD≤20%
Cadmium (Cd), %	3	6	RPD≤20%
Chromium (Cr), %	5	5	RPD≤20%
Copper (Cu), %	7	5	RPD≤20%
Mercury (Hg), %	4	4	RPD≤20%
Nickel (Ni), %	7	7	RPD≤20%
Lead (Pb), %	3	3	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	4	7	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

OC21222 2014-10-17

Date Received:

2014-10-13

Date Tested:

2014-10-13

Date Completed:

2014-10-17

ATTN:

Miss Mei Ling Tang

Page:

< 0.4

1 of 2

< 0.4

QC report: Mathod Rlank

Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	< 0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	< 0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	< 0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	< 0.2	<0.2	<0.2

< 0.4

Method OC

Zinc (Zn), µg/L

Parameter Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	97	97	80-120%
Nitrate-nitrogen (NO ₃ -N), %	93	92	80-120%
Cadmium (Cd), %	95	100	80-120%
Chromium (Cr), %	93	93	80-120%
Copper (Cu), %	96	94	80-120%
Mercury (Hg), %	97	94	80-120%
Nickel (Ni), %	98	96	80-120%
Lead (Pb), %	95	99	80-120%
Silver (Ag), %	99	95	80-120%
Zinc (Zn), %	99	93	80-120%

Remarks: 1) < = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21222

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

QC21222 Laboratory No.: 2014-10-17 Date of Issue: 2014-10-13 Date Received: 2014-10-13 Date Tested: 2014-10-17 Date Completed:

Page:

2 of 2

Samule Snike

Parameter Parameter	21222-1 spk	21222-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	92	98	80-120%
Cadmium (Cd), %	94	92	80-120%
Chromium (Cr), %	91	97	80-120%
Copper (Cu), %	96	92	80-120%
Mercury (Hg), %	89	87	80-120%
Nickel (Ni), %	99	97	80-120%
Lead (Pb), %	93	92	80-120%
Silver (Ag), %	90	88	80-120%
Zinc (Zn), %	91	89	80-120%

Sample Dunlicate

Parameter	21222-20 chk	21222-40 chk	Acceptance
Suspended Solids (SS), %	5	4	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	5	6	RPD≤20%
Cadmium (Cd), %	4	4	RPD≤20%
Chromium (Cr), %	6	3	RPD≤20%
Copper (Cu), %	4	5	RPD≤20%
Mercury (Hg), %	5	4	RPD≤20%
Nickel (Ni), %	8	3	RPD≤20%
Lead (Pb), %	5	4	RPD≤20%
Silver (Ag), %	5	3	RPD≤20%
Zinc (Zn), %	4	4	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21244 2014-10-22

Date Received:

2014-10-16

Date Tested:

2014-10-16

Date Completed:

2014-10-22

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report: Method Blank

Wiethou Diank			
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	< 0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	<0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	< 0.2	< 0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), ug/L	<0.4	<0.4	<0.4

< 0.4

Zinc (Zn), μg/L	
Method QC	

Parameter Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	96	94	80-120%
Nitrate-nitrogen (NO ₃ -N), %	89	97	80-120%
Cadmium (Cd), %	92	98	80-120%
Chromium (Cr), %	99	95	80-120%
Copper (Cu), %	98	99	80-120%
Mercury (Hg), %	94	90	80-120%
Nickel (Ni), %	93	91	80-120%
Lead (Pb), %	96	96	80-120%
Silver (Ag), %	88	102	80-120%
Zinc (Zn), %	95	100	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21244

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

Laboratory No.: QC21244 Date of Issue: 2014-10-22 Date Received: 2014-10-16 Date Tested: 2014-10-16

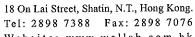
Date Completed:

2014-10-22

Page:

2 of 2

Sample Spike


Parameter	21244-1 spk	21244-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	98	93	80-120%
Cadmium (Cd), %	93	89	80-120%
Chromium (Cr), %	94	92	80-120%
Copper (Cu), %	94	94	80-120%
Mercury (Hg), %	90	90	80-120%
Nickel (Ni), %	95	97	80-120%
Lead (Pb), %	93	89	80-120%
Silver (Ag), %	98	96	80-120%
Zinc (Zn), %	87	93	80-120%

Sample Duplicate

Sample Dupitcate	21244-20 chk	21244-40 chk	Aggontongo
Parameter	21244-20 CHR	Z1244-40 Cilk	Acceptance
Suspended Solids (SS), %	3	5	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	5	8	RPD≤20%
Cadmium (Cd), %	5	3	RPD≤20%
Chromium (Cr), %	7	5	RPD≤20%
Copper (Cu), %	5	4	RPD≤20%
Mercury (Hg), %	7	5	RPD≤20%
Nickel (Ni), %	6	5	RPD≤20%
Lead (Pb), %	5	5	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	4	4	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

OC21264 2014-10-23

Date Received:

2014-10-18

Date Tested:

2014-10-18

Date Completed:

2014-10-23

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	< 0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method OC

Method QC			
MQC1	MQC2	Acceptance	
92	91	80-120%	
97	91	80-120%	
96	94	80-120%	
99	93	80-120%	
98	93	80-120%	
98	98	80-120%	
96	98	80-120%	
98	96	80-120%	
92	92	80-120%	
97	92	80-120%	
	92 97 96 99 98 98 96 98 92	92 91 97 91 96 94 99 93 98 93 98 98 96 98 98 96 98 96 92 92	

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21264 *****************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

Laboratory No.: Date of Issue:

QC21264 2014-10-23

Date Received:

2014-10-18

Date Tested:

2014-10-18

Date Completed:

2014-10-23

Page:

2 of 2

Sample Spike

Parameter	21264-1 spk	21264-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	94	93	80-120%
Cadmium (Cd), %	99	92	80-120%
Chromium (Cr), %	89	95	80-120%
Copper (Cu), %	95	97	80-120%
Mercury (Hg), %	86	88	80-120%
Nickel (Ni), %	92	94	80-120%
Lead (Pb), %	89	97	80-120%
Silver (Ag), %	96	94	80-120%
Zinc (Zn), %	91	93	80-120%

Sample Duplicate

Parameter Parameter	21264-20 chk	21264-40 chk	Acceptance
Suspended Solids (SS), %	3	4	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	5	3	RPD≤20%
Cadmium (Cd), %	5	6	RPD≤20%
Chromium (Cr), %	5	4	RPD≤20%
Copper (Cu), %	3	4	RPD≤20%
Mercury (Hg), %	5	6	RPD <u><</u> 20%
Nickel (Ni), %	4	4	RPD≤20%
Lead (Pb), %	4	6	RPD≤20%
Silver (Ag), %	6	5	RPD≤20%
Zinc (Zn), %	5	5	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

TEST REPORT

Cinotech Consultants Limited APPLICANT:

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21267 2014-10-24

Date Received:

2014-10-20

Date Tested:

2014-10-20

Date Completed:

2014-10-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

OC report:

Method Blank

nicence bitting			
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	< 0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	< 0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	< 0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	< 0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Mathad OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	95	101	80-120%
Nitrate-nitrogen (NO ₃ -N), %	92	95	80-120%
Cadmium (Cd), %	90	92	80-120%
Chromium (Cr), %	95	93	80-120%
Copper (Cu), %	100	93	80-120%
Mercury (Hg), %	97	92	80-120%
Nickel (Ni), %	95	96	80-120%
Lead (Pb), %	91	95	80-120%
Silver (Ag), %	96	97	80-120%
Zinc (Zn), %	97	96	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21267

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

Laboratory No.: QC21267
Date of Issue: 2014-10-24
Date Received: 2014-10-20
Date Tested: 2014-10-20

Date Completed: 2014-10-24

Page:

2 of 2

Sample Spike

Parameter	21267-1 spk	21267-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	102	95	80-120%
Cadmium (Cd), %	90	94	80-120%
Chromium (Cr), %	93	92	80-120%
Copper (Cu), %	99	96	80-120%
Mercury (Hg), %	97	96	80-120%
Nickel (Ni), %	94	88	80-120%
Lead (Pb), %	90	87	80-120%
Silver (Ag), %	93	91	80-120%
Zinc (Zn), %	86	96	80-120%

Sample Duplicate

Sample Duplicate Parameter	21267-20 chk	21267-40 chk	Acceptance
Suspended Solids (SS), %	5	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	4	4	RPD≤20%
Cadmium (Cd), %	5	4	RPD≤20%
Chromium (Cr), %	6	4	RPD≤20%
Copper (Cu), %	6	4	RPD≤20%
Mercury (Hg), %	5	6	RPD≤20%
Nickel (Ni), %	4	4	RPD≤20%
Lead (Pb), %	3	4	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD <u><</u> 20%
Zinc (Zn), %	5	6	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21287 2014-10-28

Date Received:

2014-10-22

Date Tested:

2014-10-22

Date Completed:

2014-10-28

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report: Method Blank

Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	< 0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	<0.01	< 0.01	< 0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method	ΩC
weinoa	UU

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	91	100	80-120%
Nitrate-nitrogen (NO ₃ -N), %	90	89	80-120%
Cadmium (Cd), %	95	96	80-120%
Chromium (Cr), %	94	97	80-120%
Copper (Cu), %	94	90	80-120%
Mercury (Hg), %	90	97	80-120%
Nickel (Ni), %	96	97	80-120%
Lead (Pb), %	102	102	80-120%
Silver (Ag), %	91	96	80-120%
Zinc (Zn), %	90	95	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21287

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

QC21287 Laboratory No.: Date of Issue: 2014-10-28 Date Received: 2014-10-22 Date Tested: 2014-10-22 Date Completed: 2014-10-28

Page:

2 of 2

Sample Spike

Parameter	21287-1 spk	21287-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	91	89	80-120%
Cadmium (Cd), %	95	85	80-120%
Chromium (Cr), %	95	100	80-120%
Copper (Cu), %	93	96	80-120%
Mercury (Hg), %	94	94	80-120%
Nickel (Ni), %	98	90	80-120%
Lead (Pb), %	88	90	80-120%
Silver (Ag), %	94	91	80-120%
Zinc (Zn), %	90	89	80-120%

Sample Duplicate			
Parameter	21287-20 chk	21287-40 chk	Acceptance
Suspended Solids (SS), %	3	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	4	3	RPD≤20%
Cadmium (Cd), %	N/A	N/A	RPD≤20%
Chromium (Cr), %	7	4	RPD≤20%
Copper (Cu), %	4	5	RPD≤20%
Mercury (Hg), %	4	5	RPD≤20%
Nickel (Ni), %	7	5	RPD≤20%
Lead (Pb), %	5	5	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	7	4	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

TEST REPORT

Cinotech Consultants Limited APPLICANT:

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

QC21300 Laboratory No.:

Date of Issue: 2014-10-30

Date Received:

2014-10-24

Date Tested:

2014-10-24

Date Completed:

2014-10-30

Page:

1 of 2

ATTN:

Miss Mei Ling Tang

QC report: Method Blank

IVICTIOU DIAIR			
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	<0.01	<0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	<0.4	<0.4	<0.4

Method OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	90	95	80-120%
Nitrate-nitrogen (NO ₃ -N), %	98	93	80-120%
Cadmium (Cd), %	90	92	80-120%
Chromium (Cr), %	98	95	80-120%
Copper (Cu), %	95	94	80-120%
Mercury (Hg), %	96	94	80-120%
Nickel (Ni), %	99	96	80-120%
Lead (Pb), %	93	88	80-120%
Silver (Ag), %	94	98	80-120%
Zinc (Zn), %	95	93	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21300

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

 Laboratory No.:
 QC21300

 Date of Issue:
 2014-10-30

 Date Received:
 2014-10-24

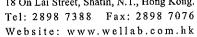
 Date Tested:
 2014-10-24

 Date Completed:
 2014-10-30

Page:

2 of 2

Sample Spike


Parameter Parameter	21300-1 spk	21300-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	94	93	80-120%
Cadmium (Cd), %	98	85	80-120%
Chromium (Cr), %	86	94	80-120%
Copper (Cu), %	92	97	80-120%
Mercury (Hg), %	91	98	80-120%
Nickel (Ni), %	89	100	80-120%
Lead (Pb), %	90	90	80-120%
Silver (Ag), %	87	85	80-120%
Zinc (Zn), %	89	96	80-120%

Sample Duplicate

Parameter	21300-20 chk	21300-40 chk	Acceptance
Suspended Solids (SS), %	3	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	3	5	RPD≤20%
Cadmium (Cd), %	5	5	RPD≤20%
Chromium (Cr), %	4	4	RPD≤20%
Copper (Cu), %	5	4	RPD≤20%
Mercury (Hg), %	5	6	RPD≤20%
Nickel (Ni), %	3	3	RPD≤20%
Lead (Pb), %	4	5	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	4	5	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: Date of Issue:

QC21307 2014-10-31

Date Received:

2014-10-27

Date Tested:

2014-10-27

Date Completed:

2014-10-31

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report: Method Blank

Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	< 0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	96	92	80-120%
Nitrate-nitrogen (NO ₃ -N), %	100	96	80-120%
Cadmium (Cd), %	90	94	80-120%
Chromium (Cr), %	90	92	80-120%
Copper (Cu), %	95	95	80-120%
Mercury (Hg), %	95	96	80-120%
Nickel (Ni), %	97	99	80-120%
Lead (Pb), %	90	90	80-120%
Silver (Ag), %	96	98	80-120%
Zinc (Zn), %	95	94	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21307

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

 Laboratory No.:
 QC21307

 Date of Issue:
 2014-10-31

 Date Received:
 2014-10-27

 Date Tested:
 2014-10-27

 Date Completed:
 2014-10-31

Page:

2 of 2

Sample Spike

Parameter	21307-1 spk	21307-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	98	90	80-120%
Cadmium (Cd), %	91	88	80-120%
Chromium (Cr), %	88	95	80-120%
Copper (Cu), %	92	93	80-120%
Mercury (Hg), %	90	91	80-120%
Nickel (Ni), %	98	85	80-120%
Lead (Pb), %	90	86	80-120%
Silver (Ag), %	95	89	80-120%
Zinc (Zn), %	95	93	80-120%

Sample Duplicate

Parameter	21307-20 chk	21307-40 chk	Acceptance
Suspended Solids (SS), %	4	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	4	5	RPD≤20%
Cadmium (Cd), %	3	3	RPD <u><</u> 20%
Chromium (Cr), %	5	5	RPD <u><</u> 20%
Copper (Cu), %	4	6	RPD≤20%
Mercury (Hg), %	5	6	RPD≤20%
Nickel (Ni), %	7	7	RPD≤20%
Lead (Pb), %	3	4	RPD≤20%
Silver (Ag), %	6	4	RPD≤20%
Zinc (Zn), %	7	4	RPD≤20%

Remarks: $1) \le less than$

2) N/A = Not applicable

...END OF KEFORT

Cinotech Consultants Limited APPLICANT:

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: OC21313 2014-11-05 Date of Issue: 2014-10-30 Date Received: 2014-10-30 Date Tested: Date Completed: 2014-11-05

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

QC report: Method Blank

Michigany		T	1 .
Parameter	MB 1	MB 2	Acceptance
Suspended Solids (SS), mg/L	<0.5	<0.5	<0.5
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	< 0.01	<0.01
Cadmium (Cd), μg/L	<0.1	<0.1	<0.1
Chromium (Cr), µg/L	<0.2	<0.2	<0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2
Mercury (Hg), µg/L	<0.2	<0.2	<0.2
Nickel (Ni), µg/L	<0.2	<0.2	<0.2
Lead (Pb), µg/L	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2
Zinc (Zn), µg/L	<0.4	<0.4	<0.4

Method OC

Parameter	MQC1	MQC2	Acceptance
Suspended Solids (SS), %	95	99	80-120%
Nitrate-nitrogen (NO ₃ -N), %	98	96	80-120%
Cadmium (Cd), %	98	98	80-120%
Chromium (Cr), %	94	96	80-120%
Copper (Cu), %	94	97	80-120%
Mercury (Hg), %	92	97	80-120%
Nickel (Ni), %	93	96	80-120%
Lead (Pb), %	96	96	80-120%
Silver (Ag), %	95	97	80-120%
Zinc (Zn), %	94	99	80-120%

Remarks: $1) \le less than$

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 21313

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: QC21313 Date of Issue: 2014-11-05 Date Received: 2014-10-30 Date Tested: 2014-10-30

Date Completed:

2014-11-05

Page:

2 of 2

Sample Spike

Parameter	21313-1 spk	21313-21 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A
Nitrate-nitrogen (NO ₃ -N), %	91	91	80-120%
Cadmium (Cd), %	90	90	80-120%
Chromium (Cr), %	91	91	80-120%
Copper (Cu), %	88	90	80-120%
Mercury (Hg), %	90	97	80-120%
Nickel (Ni), %	96	95	80-120%
Lead (Pb), %	94	89	80-120%
Silver (Ag), %	97	97	80-120%
Zinc (Zn), %	93	95	80-120%

Sample Duplicate

Parameter	21313-20 chk	21313-40 chk	Acceptance
Suspended Solids (SS), %	5	3	RPD≤20%
Nitrate-nitrogen (NO ₃ -N), %	4	3	RPD≤20%
Cadmium (Cd), %	5	4	RPD≤20%
Chromium (Cr), %	3	4	RPD≤20%
Copper (Cu), %	4	5	RPD<20%
Mercury (Hg), %	N/A	N/A	RPD≤20%
Nickel (Ni), %	3	3	RPD≤20%
Lead (Pb), %	7	4	RPD≤20%
Silver (Ag), %	N/A	N/A	RPD≤20%
Zinc (Zn), %	6	6	RPD≤20%

Remarks: $1) \le 1$ less than

2) N/A = Not applicable

APPENDIX H EVENT AND ACTION PLAN FOR MARINE WATER QUALITY

Appendix H Event and Action Plan for Water Quality

EVENT	ACTION					
	ET	IEC	Engineer	Contractor		
Action level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all work process and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance. 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all work process and methods; Consider changes of working methods or slow down the work process; Discuss with ET and IEC and propose mitigation measures to IEC and the Engineer; Implement the agreed mitigation measures. The above actions should be taken within 1 working day after the exceedance is identified) 		

EVENT			ACTION	
	ET	IEC	Engineer	Contractor
Action level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all work process and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check work process and methods; Consider changes of working methods or slow down the work process; Discuss with ET and IEC and propose mitigation measures to IEC and the Engineer within 3 working days; Implement the agreed mitigation measures. The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; 	Discuss with ET and Contractor on the mitigation measures;	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; 	Inform the Engineer and confirm notification of the non-compliance in writing;
one sampling day	 Inform IEC, Contractor and EPD; Check monitoring data, all 	Review proposals on mitigation measures submitted by Contractor	Request Contractor to critically review the working methods;	 Rectify unacceptable practice; Check all work process and methods; Consider changes of working methods

EVENT	ACTION				
	ET	IEC	Engineer	Contractor	
	work process and Contractor's working methods; 5. Discuss mitigation measures with IEC, the Engineer and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level. (The above actions should be taken within 1 working day after the exceedance is identified)	and advise the Engineer accordingly; 3. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	or slow down the work process; 5. Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within 3 working days; 6. Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	

EVENT	ACTION				
	ET	IEC	Engineer	Contractor	
Limit level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all work process and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified) 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all work process and methods; Consider changes of working methods or slow down the work process; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work. (The above actions should be taken within 1 working day after the exceedance is identified) 	