Civil Engineering and Development Department

Environmental Monitoring Works at Kai Tak Development

Water, Sediment & Odour Quality Report January and February 2013

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	
Introduction	
General water quality monitoring works	
Odour Sampling Works	
Odour Patrol Works	
Sediment Monitoring Works	
1. Introduction	
Background	
2. General Water Quality monitoring	
Monitoring Requirements	
Monitoring Locations	
Monitoring Equipment	
Monitoring Parameters	
Monitoring Frequency	
Monitoring Methodology	
Laboratory Analytical Methods	
QA/QC Requirements	
Results and Observation	
3. Odour Sampling	
Sampling Requirements	
Monitoring Requirements	
Monitoring Locations	
Monitoring Equipment	
Monitoring Parameters and Frequency	
Laboratory Analytical Methods	
·	
Olfactometry Analysis in Laboratory (The Hong Kong Polytechnic University)	
Results and Observation	
4. Odour Patrol	
Monitoring Methodology	
Monitoring Equipment	
Calibration of In Situ Instruments	
Odour Patrol Results and On-Site Observations	
Monitoring Locations	
Sampling Procedure	
Details of Testing	
QA/QC Requirements	
Monitoring Equipment	
Results and Observation	2.

LIST OF TABLES

Table 2.1	Water Quality Monitoring Stations
Table 2.2	Water Quality Monitoring Equipment
Table 2.3	Water Quality Monitoring Parameters
Table 2.4	Methods for Laboratory Analysis for Water Samples
Table 2.5	Water Depth of Water Quality Monitoring Stations
Table 3.1	Odour Sampling Stations
Table 3.2	Equipment for Odour Monitoring Program
Table 3.3	Odour Sampling Parameters and Frequency
Table 4.1	Equipment for Odour Patrol
Table 4.2	Summary of Odour Patrol Results in February 2013
Table 5.1	Sediment Monitoring Stations
Table 5.2	Sediment Monitoring Parameters and Frequency
Table 5.3	Testing Parameters, Reporting Limit and Analytical Method
Table 5.4	Equipment for Sediment Monitoring Program
Table 5.5	Water Depth at Sediment Monitoring Stations

LIST OF FIGURES

Figure 1	Locations of Water Quality Monitoring Stations
Figure 2	Locations of Odour and Sediment Monitoring Stations
Figure 3	Locations of Odour Patrol Route and Sniffing Locations

LIST OF APPENDIX

Appendix A1 Appendix A2 Appendix A3 Appendix A4 Appendix A5 Appendix B Appendix C1 Appendix C2 Appendix C3 Appendix D1 Appendix D2 Appendix E1 Appendix E1 Appendix E2	Copies of calibration certificates for Water Quality Monitoring Copies of calibration certificates for Odour Sampling Copies of calibration certificates for Sediment Monitoring Copies of Calibration Certificates for Odour Patrol Certificate for a Qualified Odour Panel Member Environmental Monitoring Schedule Laboratory Testing Report for Water Quality Monitoring Laboratory Testing Report for Odour Sampling Laboratory Testing Report for Sediment Monitoring Quality Control Report for Water Quality Monitoring Quality Control Report for Sediment Monitoring In-situ Measurement Results for Marine Water Quality Monitoring In-situ Measurement Results for Odour Sampling
Appendix E2	In-situ Measurement Results for Odour Sampling
Appendix E3	In-situ Measurement Results for Sediment Monitoring
Appendix E4	Results of Odour Patrol Survey in February 2013
Appendix F	Meteorological data from Hong Kong Observatory Station during Odour
	Sampling and Odour Patrol

EXECUTIVE SUMMARY

Introduction

1. This is the 10th Water, Sediment & Odour Report for Environmental Monitoring Works for Kai Tak Development during construction phase (the Project). This report documents the results and findings of the 7th general water quality monitoring works, 4th odour sampling, 4th sediment monitoring and 8th odour patrol conducted for the Project in January and February 2013.

General water quality monitoring works

2. General marine water quality monitoring shall be carried out quarterly at the designated locations to give adequate coverage of different tidal states during both wet and dry seasons. During each survey event, sampling shall be taken at 2 tide conditions (midflood and mid-ebb). The 7th General Water Quality Monitoring for the Project was performed on 8th February 2013 and the monitoring results were checked and reviewed.

Odour Sampling Works

3. Odour sampling shall be carried out within Kai Tak Approach Channel (KTAC) and Kowloon Tong Typhoon Shelter (KTTS) as well as along To Kwa Wan (TKW) and Ma Tau Kok (MTK) waterfront half-yearly interval to determine the odour emissions from water surface throughout the Contract and Maintenance Period. The first odour sampling shall be carried within the August of 2011 or as agreed with the Engineer. One of the sampling events within each calendar year shall be undertaken during summer season (i.e. July or August). The 4th Odour Sampling for the Project was performed on 27th February 2013 and the monitoring results were checked and reviewed.

Odour Patrol Works

4. Odour patrol shall be carried out in the month of February, May, July, August, September and November along the same odour route and at the same sniffing locations. The first odour patrol shall be carried out within November 2011. The 8th odour patrol for the Project was performed on 25th and 26th February 2013 and the monitoring results were checked and reviewed.

Sediment Monitoring Works

- 5. Sediment monitoring shall be carried out at the same locations of the odour sampling stations half-yearly interval throughout the Contract Period. The first sediment sampling shall be carried out within the August of 2011 or as agreed with the Engineer. The 4th Sediment Monitoring for the Project was performed on 28th February 2013 and the monitoring results were also checked and reviewed.
- 6. In addition, no environmental monitoring works were conducted in January 2013.

1. Introduction

Background

- 1.1 In accordance with the approved Kai Tak Development (KTD) Schedule 3 EIA, improvements works have been proposed to alleviate the potential odour impact from Kai Tak Approach Channel (KTAC) and Kwan Tong Typhoon Shelter (KTTS). In order to monitor the effectiveness and impacts of the proposed works, environmental monitoring works of water, sediment and odour quality were conducted for Kai Tak Development (the Project).
- 1.2 This is the 10th Water, Sediment & Odour Quality Monitoring Reports summarizing the general water quality monitoring works, odour and sediment monitoring works for the Project in January and February 2013.

2. General Water Quality monitoring

Monitoring Requirements

- 2.1 General marine water quality monitoring shall be carried out quarterly at the designated locations to give adequate coverage of different tidal states during both wet and dry seasons.
- 2.2 The first general marine water quality monitoring during construction phase shall be carried out within the summer season of 2011 or as agreed with the Engineer.
- 2.3 For all the monitoring stations, sampling was taken 3 water depths, namely 1m below the water surface, mid depth and 1m above the sea bed. For stations that are less than 3m in depth, only the mid depth sample was taken. Mid-depth was omitted in case the water depth is less than 6m. During each survey event, sampling was taken at 2 tide conditions (mid-flood and mid-ebb).
- 2.4 For the WSD intake points, the monitoring was conducted at the appropriate vertical levels of the abstraction points of these intakes to collect water quality information.
- 2.5 At each monitoring station, duplicate samples were collected at each water depth.
- 2.6 Sufficient volume of each water sample (not less than 1 litre) was collected for analysis to achieve the required detection limit. *In-situ* measurements at DO, pH, salinity, temperature and turbidity were taken at 0.5m depth intervals at all the marine water quality monitoring stations.

Monitoring Locations

2.7 The monitoring locations include seven stations within the approach channel (AC1-7), one station at the KTTS (KT1), three stations at inner Kowloon Bay (IB1-3), one station at outer Kowloon Bay (OB1), two stations in the Victoria Harbour adjacent to the Kowloon Bay (VH1-2), one station in the vicinity of Jordan Valley Culvert (JVC), one station Kai Tak Nullah (KTN) and four stations at the WSD flushing water intakes. The locations are also summarized in Table 2.1 and shown on **Figure 1**.

Table 2.1 Water Quality Monitoring Stations

Manitaning Stations	Coordinates		
Monitoring Stations	Northing	Easting	
AC1	820147.04	838736.55	
AC2	820218.32	838807.83	
AC3	819920.71	838952.22	
AC4	819988.82	839030.88	
AC5	819690.85	839214.12	
AC6	819755.00	839278.27	
AC7	819545.62	839418.24	
KT1	819010.57	840260.66	
IB1	819861.53	838265.60	
IB2	819465.93	838456.29	
IB3	819176.01	838054.63	
OB1	819134.25	839182.22	
VH1	817553.42	837739.09	
VH2	817588.53	840243.13	
KTN	820399.67	838776.18	
JVC	819940.86	839165.73	
WSD Intake at Tai Wan	818268.40	837952.00	
WSD Intake at Cha Kwo Ling	817836.40	841544.20	
WSD Intake at Quarry Bay	817056.00	839752.00	
WSD Intake at Sai Wan Ho	816451.38	841215.41	

Monitoring Equipment

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 2.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 2.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 2.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 2.11 Salinity compensation was built-in in the DO equipment.

Turbidity

2.12 Turbidity was measured *in situ* by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity

between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

2.13 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less that two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

2.14 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

<u>pH</u>

2.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

2.16 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Position System

2.17 A hand held differential Global Positioning System (GPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements. GPS was calibrated at checkpoint (Quarry Bay Survey Nail at Easting 840683.49 and Northing 816709.55) to ensure the monitoring station was at the correct position before taking measurement and water samples.

Sample Container and Storage

- 2.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles with appropriate preservatives added, packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible. Sufficient volume of samples was collected to achieve the detection limit.
- 2.19 For the sample containers for *E. coli*, the water samples were collected in sterile bottles with leakproof lids.

Calibration of In Situ Instruments

- 2.20 All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 2.21 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 2.22 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 2.23 Table 2.2 summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix A1**.

Table 2.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2
Multi-parameter Water Quality System	YSI 6820-C-M	2
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	2
Water Depth Detector	Fishfinder 140	2

Monitoring Parameters

2.24 The monitoring parameters to be measured *in-situ* and in laboratory are summarized in Table 2.3.

Table 2.3 Water Quality Monitoring Parameters

In-situ Measurement	Laboratory Measurement	
Dissolved Oxygen	Suspended Solids (SS)	
pН	E. coli	
Water Temperature	5-day Biochemical Oxygen Demand (BOD ₅)	
Salinity	Ammonia Nitrogen (NH ₃ -N)	
Secchi disc depth	Unionized Ammonia (UIA)	
Turbidity	Total Kjeldahl Nitrogen (TKN)	
	Nitrite-nitrogen (NO ₂ -N)	
	Nitrate-nitrogen (NO₃-N)	
	Ortho-phosphate (PO ₄)	
	Total Phosphorous (TP)	
	Cadmium (Cd)	
	Chromium (Cr)	
	Copper (Cu)	
	Mercury (Hg)	
	Nickel (Ni)	
	Lead (Pb)	
	Silver (Ag)	
	Zinc (Zn)	

2.25 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Frequency

- 2.26 General marine water quality monitoring shall be carried out quarterly at the designated locations to give adequate coverage of different tidal states during both wet and dry seasons.
- 2.27 During each survey event, sampling will be taken at 2 tide conditions (mid-flood and mid-ebb) to give adequate coverage of different tidal states during both wet and dry seasons. The water quality monitoring period had covered the mid-flood tide and/or mid-ebb tide.

- 2.28 The monitoring will be ceased in the events of any emergency sewage discharges from the preliminary treatment works (PTWs) on both sides of the Victoria Harbour. Monitoring will be avoided during and after any storm events where sewage overflow may be anticipated from the PTWs. There will not be any marine construction activities in the vicinity of the stations during the monitoring.
- 2.29 The water quality monitoring schedule in the reporting period is provided in **Appendix B.**

Monitoring Methodology

- 2.30 The monitoring stations were accessed using survey boat to within 3 m by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly. The in-situ measurements at predetermined depths were carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 2.31 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 2.25 was also recorded.

Laboratory Analytical Methods

2.32 The testing of all parameters was conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, lowest detection limit and limit of reporting are provided in Table 2.4.

Table 2.4 Methods for Laboratory Analysis for Water Samples

Determinant	Proposed Method	Limit of	Lowest
	•	Reporting	Detection Limit
Cadmium (Cd)	In-house Method SOP 053	0.1 μg/L	0.1 μg/L
Chromium (Cr)	(ICP-ES) and SOP 076	0.2 μg/L	0.2 μg/L
Copper (Cu)	(ICP-MS)	0.2 μg/L	0.2 μg/L
Silver (Ag)	[Ref. Method: APHA 19e	0.2 μg/L	0.2 μg/L
Nickel (Ni)	3030F 3b and 3120B, USEPA 3005A & 6020A]	0.2 μg/L	0.2 μg/L
Zinc (Zn)	USEI A 3003A & 0020A	0.4 μg/L	0.4 μg/L
Lead (Pb)		0.2 μg/L	0.2 μg/L
Mercury (Hg)		0.2 μg/L	0.2 μg/L
Suspended Solids (SS)	APHA 17ed 2540 D	0.5 mg/L	0.5 mg/L
5-day Biochemical Oxygen Demand (BOD ₅)	APHA 19ed 5210 B	2 mg-O ₂ /L	0.4 mg-O ₂ /L
Ammonia Nitrogen (NH ₃ -N)	In-house method SOP057 (FIA) [Ref. Method: APHA 20e 4500-NH ₃ H (FIA)]	0.01mg NH ₃ -N/L	0.01mg NH ₃ -N/L
Unionized Ammonia (UIA)	By Calculation	0.001mg/L	-
Total Kjeldahl Nitrogen (TKN)	In-house method SOP058(FIA) [Ref. Method: APHA 20e 4500-Norg A,B,D (FIA)]	0.1mg N/L	0.1mg N/L
Nitrite-nitrogen (NO ₂ -N)	In-house Method SOP068 (FIA) [Ref. Method: APHA 20e 4500-NO ₂ - B (FIA)]	0.002 mg NO2-N/L	0.002 mg NO ₂ -N/L
Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA) [Ref. Method: APHA 20e 4500-NO ₃ - F (FIA)]	0.01 mg NO ₃ -N/L	0.01 mg NO ₃ -N/L
E. coli	In-house method SOP069 (Membrane Filtration Method by CHROMagar) [Ref. Method: APHA 20e 9221E & 9222D]	1 cfu/100mL	1 cfu/100mL
Ortho-phosphate (PO ₄)	In-house Method SOP054 (FIA) [Ref. Method: APHA 20e 4500-P A,F,G (FIA)]	0.01mg PO ₄ ³ -P/L	0.01mg PO ₄ ³ -P/L
Total Phosphorous (TP)	In-house Method SOP 055 (FIA) [Ref. Method: APHA 20e 4500-P B,E,F,H (FIA)]	0.01 mg-P/L	0.01 mg-P/L

2.33 To calculate the amount of unionized ammonia present (UIA), the Total Ammonia Nitrogen (TAN) must be multiplied by the appropriate factor based on the pH and temperature from the water sample. The calculation is in accordance with Ambient Water Quality Criteria for Ammonia published by United States Environmental Protection Agency. The lowest reporting limit of UIA is 0.001mg/L.

QA/QC Requirements

Decontamination Procedures

2.34 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

2.35 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

Quality Control Measures for Sample Testing

- 2.36 The samples testing were performed by HOKLAS accredited laboratories. The following quality control programme was performed by the laboratories for each batch of samples:
 - ♦ Method blank;
 - ♦ Sample duplicate (at 5% level i.e. one for every 20 samples);
 - ♦ Sample spike (at 5% level i.e. one for every 20 samples); and
 - ♦ Quality control samples.

Results and Observation

- 2.37 The general water quality monitoring was conducted on 8th February 2013.
- 2.38 No notification of emergency sewage discharges from the preliminary treatment works (PTWs) on both sides of the Victoria Harbour and marine construction activities in the vicinity of the stations during the monitoring works. No Monitoring was conducted during and after any storm events where sewage overflow may be anticipated from the PTWs.
- 2.39 The weather during the sampling at mid-ebb tide and mid-flood tide was cloudy.
- 2.40 No special phenomena near the monitoring stations were observed during the monitoring works.
- 2.41 No marine activities were conducted in the vicinity of the stations during the monitoring.

- 2.42 The laboratory testing report and QC report are provided in **Appendix C1 and Appendix D1 respectively**.
- 2.43 The water depth of each monitoring station at mid-ebb and mid flood tide is shown in Table 2.5 and the *in-situ* measurement results including dissolved oxygen, turbidity, salinity, pH, secchi disc depth and temperature of the general water quality monitoring are provided in **Appendix E1**.

Table 2.5 Water Depth of Water Quality Monitoring Stations

table 2.5 water Depth of water Quanty Monitoring Stations		
Water Quality Monitoring Stations	Water	Depth (m)
water Quanty Monitoring Stations	Mid-Ebb	Mid-Flood
AC1	4.5	5.0
AC2	4.0	5.0
AC3	4.5	5.5
AC4	5.0	5.5
AC5	4.5	6.0
AC6	6.0	6.0
AC7	6.0	6.5
KT1	6.5	7.0
IB1	6.5	7.0
IB2	7.5	9.0
IB3	9.0	9.5
OB1	8.0	8.0
VH1	24.0	19.0
VH2	17.5	17.5
KTN	2.5	3.0
JVC	4.5	4.5
WSD Intake at Tai Wan	17.0	17.0
WSD Intake at Cha Kwo Ling	12.0	13.0
WSD Intake at Quarry Bay	12.0	12.0
WSD Intake at Sai Wan Ho	12.0	12.0

3. Odour Sampling

Sampling Requirements

- 3.1 The odour sampling shall be carried out within Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS) as well as To Kwa Wan (TKW) and Ma Tau Kok (MTK) waterfront at half-yearly interval to determine the odour emissions from water surface throughout the Contract Period.
- 3.2 The first odour sampling shall be carried within the August of 2011 or as agreed with the Engineer. One of the sampling events within each calendar year shall be undertaken during summer season (i.e. July or August).
- 3.3 In order to capture more representative results, measurements and sampling will be conducted during low tide periods with reference to the tidal chart of Hong Kong Observatory for KTAC, KTTS and TKW.
- 3.4 The relevant meteorological data (e.g. ambient temperature, wind speed and direction, etc.) from the Hong Kong Observatory station during the measurement/sampling period were recorded for reference.
- 3.5 The odour sample was not contaminated, lost, or altered during storage. In this regard, the odour sampling bag was:
 - Odour-free, i.e. they will not add odours to the sample;
 - Made of materials which does not absorb or react with odorous samples;
 - Sufficiently impervious to prevent any significant loss of odour components;
 - Reasonably robust;
 - Leak-free;
 - Equipped with leak-free fittings, compatible with olfactometer and other sampling equipment; and
 - Of sufficient capacity to enable the completion of the tests.
- 3.6 Exposure of samples to direct sunlight was avoided to minimize photochemical reactions.

Monitoring Requirements

- 3.7 The following parameters were also monitored at each of the measurement locations.
 - Dissolved oxygen (DO) (% saturation) in the water column at depth 1m above seabed;
 - Dissolved oxygen (DO) (mg/L) in the water column at depth 1m above seabed;
 - Water Temperature (°C) at depth 1m above seabed;
 - Ambient Air Temperature (°C)
 - Water depth (m)
 - Salinity (parts per thousand) at depth 1m above seabed;
 - Redox Potential (mV) at depth 1m above seabed; and

• pH at depth 1m above seabed.

Monitoring Locations

3.8 Thirteen monitoring stations are proposed for the odour sampling. The locations are also summarized in Table 3.1 and shown on **Figure 2**.

Table 3.1 Odour Sampling Stations

Location	Location Sampling Location		nates
ID	Sampling Location	Easting	Northing
SA1	Northern KTAC, in the vicinity of Kai Tak Nullah (KTN)	838744.13	820311.91
SA2	Northern KTAC	838840.95	820030.07
SA3	Northern KTAC, in the vicinity of Jordan Valley Culvert (JVC) Outfall	839163.99	819942.90
SA4		839407.66	819537.90
SA5	Southern KTAC	839580.35	819512.47
SA6		839647.87	819329.45
SA7		840122.60	819275.72
SA8	KTTS	840270.71	819015.35
SA9		840479.55	818798.14
SA10	Kowloon Bay (between runway opening and TKWTS)	838694.90	819582.080
SA11	MTK waterfront, at the end of Ma Tau Kok Road	838138.20	820038.77
SA12	TKW waterfront, near Vehicle Examination Centre	837982.97	819704.84
SA13	Hoi Sham Park waterfront	837857.15	819436.94

Monitoring Equipment

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 3.9 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 3.10 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 3.11 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 3.12 Salinity compensation is built-in in the DO equipment.

Water Depth Detector

3.13 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

pН

3.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

TM39 (mV meter)

3.15 The meter features high accuracy, rugged plastic enclosure, microprocessor controlled evaluation and operation with pH or redox combination electrodes. The measuring range was from -1999 to 1999 mV.

Thermo-Anemometer

3.16 The meter capable of record up to 2-hour air velocity averaging for measurements and temperature measurement via built-in thermistor.

Salinity

3.17 A portable salinometer capable of recording salinity within the range of 0-40 ppt was be used for salinity measurements.

Position System

- 3.18 A hand held differential Global Positioning System (GPS) was used during odour sampling to ensure the monitoring vessel is at the correct location before taking measurements. GPS was calibrated at checkpoint (Quarry Bay Survey Nail at Easting 840683.49 and Northing 816709.55) to ensure the monitoring station was at the correct position before taking measurement and odour samples.
- 3.19 Table 3.2 summarizes the equipment used in the odour monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix A2**.

Table 3.2 Equipment for Odour Monitoring Program

Equipment Model and Make		Qty.
Multi-parameter Water Quality System	YSI 6820-C-M	1
mV Meter	TM39	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	1
Thermo-Anemometer	AZ Instrument (Model No. AZ8904)	1
Water Depth Detector	Fishfinder 140	1

Calibration of In Situ Instruments

- 3.20 All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 3.21 The thermo-anemometer was checked and calibrated at yearly intervals.
- 3.22 The BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed for the on site calibration of field equipment (Multi-parameter Water Quality System).
- 3.23 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.

Monitoring Parameters and Frequency

3.24 Table 3.3 summarizes the monitoring parameters and frequencies of the odour sampling at each of the measurement locations.

Table 3.3 Odour Sampling Parameters and Frequency

Monitoring Stations	Parameters, unit	Frequency
SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13	 Dissolved oxygen (DO) (% saturation) in the water column at depth 1m above seabed; Dissolved oxygen (DO) (mg/L) in the water column at depth 1m above seabed; Water Temperature (°C) at depth 1m above seabed; Ambient Air Temperature (°C) Water depth (m) Salinity (parts per thousand) at depth 1m above seabed; Redox Potential (mV) at depth 1m above seabed; and pH at depth 1m above seabed. One odour sample was collected at each measurement location for olfactometry analysis in laboratory 	• Half-yearly

Laboratory Analytical Methods

Olfactometry Analysis in Laboratory (The Hong Kong Polytechnic University)

- 3.25 The odour samples were collected using a hood method such as a wind tunnel system with the inflow rate with speed of 0.01 m/s and the odour concentration of the collected air samples were determined by a forced-choice dynamic olfactometer with a panel of human assessors being the sensor in accordance with the European Standard Method: Air Quality Determination of Odour Concentration by Dynamic Olfactometry (EN13725) within 24 hours after collection. About 60L of gas sample was collected at the selected sampling location.
- 3.26 The collected odour samples were delivered to the laboratory (PolyU) within 24 hours after collection.
- 3.27 The odour laboratory was ventilated to maintain an odour-free environment and to provide fresh air to the panel members. Each odour testing session comprised at least five qualified panelists. All of the panelists were screened beforehand by using 50ppm solution/mixture of certified n-butanol standard gas.
- 3.28 The olfactometry method was normally used for a source odour concentration analysis with a detection limit of 10ou/m³.

QA/QC Requirements

- 3.29 During each odour sampling day, one blank sample was collected for quality control. The sample was taken by purging pure nitrogen gas into odour sampling bag directly on site as a blank sample.
- 3.30 The olfactometry analysis was conducted by laboratory (PolyU) complying with the European Standard EN13725:2003.
- 3.31 The results of blank sample was below the threshold of olfactometry measurement, which means the on-site filling gas used in this case had no background odour to interfere the results of real odour samples. The laboratory QA/QC results are provided in the laboratory analysis report.

Results and Observation

- 3.32 The odour sampling schedule in the reporting period is provided in **Appendix B**. The odour sampling for 13 locations was conducted during the period of low water level.
- 3.33 The odour sampling was conducted on 27th February 2013.
- 3.34 The weather during the sampling was fine.
- 3.35 No marine activities were conducted in the vicinity of the stations during the monitoring.
- 3.36 The following observation near the monitoring stations were recorded during the field works:
 - Smell of sewage was noticed during the sampling at SA1, SA2, SA3 and SA13.
- 3.37 The on-site odour sampling and laboratory olfactometry measurement report prepared by PolyU are provided in **Appendix C2**. The calibration records for the dilution apparatus used for olfactometry measurement are provided in **Appendix A2**.
- 3.38 The in-situ measurement results including dissolved oxygen, water and ambient temperature, water depth, salinity, pH and redox potential are provided in **Appendix E2**.
- 3.39 The relevant meteorological data including ambient temperature, wind speed and wind direction from the Hong Kong Observatory Station during the measurement/sampling period are provided in **Appendix F**.

4. Odour Patrol

Monitoring Methodology

- 4.1 During the patrol, the patrol members shall conduct the odour intensity analysis. The sequence shall generally start from less odorous locations to stronger odorous locations. The independent trained personnel/competent persons shall use their nose (olfactory sensors) to sniff odours at different locations. The main odour emission sources and the areas to be affected by the odour nuisance shall be identified. No odour patrol shall be conducted during rainy days.
- 4.2 The odour intensity should be determined at 5 different levels according to the criteria below:
 - 0 Not detected. No odour perceived or an odour so weak that it cannot be easily characterised or described;
 - 1 Slight Identifiable odour, and slight chance to have odour nuisance;
 - 2 Moderate Identifiable odour, and moderate chance to have odour nuisance;
 - 3 Strong Identifiable, likely to have odour nuisance;
 - 4 Extreme Severe odour, and unacceptable odour level.

Odour Patrol Survey

- 4.3 Two qualified odour patrol members, Mr. Tang Wing Kwai and Mr. Lee Man Hei were selected for conducting odour patrol. The qualified odour patrol members have their individual n-butanol thresholds complied with the requirement of European Standard Method (EN13725) in the range of 20 to 80 ppb. The certificates for the qualified odour panel members are shown in **Appendix A5**.
- 4.4 The odour patrol along with the odour route with 60 sniffing locations was conducted by the 2 qualified odour patrol members in February 2012 during daytime (low tide condition) and evening/night time (high tide condition).
- 4.5 In general, the proposed odour patrol route and the proposed sniffing locations is in the vicinity of the planned ASRs within the Kai Tak Development to determine any potential operational odour impacts arising from Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS).
- 4.6 In addition, sniffing location no. 35 is shifted to the right side about 100m in compare with the baseline patrol route due to the access problem. The final odour patrol route and sniffing locations is shown in **Figure 3.**

4.7 The duration of the odour patrol works are shown in the following table:-

Date	Time	Tidal Condition	Patrol Locations	* Height(m)
25 February 2013	04:48 - 08:19	Low Tide	Within Kai Tak	0.7 - 1.4
25 February 2013	17:06 – 19:43	High Tide	Development and	1.5 - 2.1
26 February 2013	05:49 - 08:27	Low Tide	Ma Tau Kok	0.8 - 1.4
26 February 2013	17:11 – 19:24	High Tide	Waterfront	1.4 – 1.9

^{*} Heights of High/Low Tides obtained from The Hong Kong Observatory (Predicted Tides at Quarry Bay)

- 4.8 During the odour patrol survey, the following findings shall be recorded:
 - the prevailing weather condition (sunny, fine, cloudy and rainy);
 - > the wind direction;
 - > the local wind speed;
 - > odour intensity;
 - any odour detected during sampling and the flavors of odour with detail description of characteristics (e.g. sewage or rotten egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc);
 - potential odour source (exposed sediment, water or sewage; floating debris or material, others (to be specified));
 - **b** downwind or upwind direction from the odour source;
 - duration of odour (intermittent or continuous) during sampling;
 - > tidal conditions; and
 - time of survey.
- 4.9 Odour intensity at each location shall be assessed by the 2 odour patrol members, respectively, and all locations are shown in **Figure 3**.

Monitoring Equipment

Thermo-Anemometer

- 4.10 The meter capable of record up to 2-hour air velocity averaging for measurements and temperature measurement via built-in thermistor.
- 4.11 Table 4.1 summarizes the equipment used in the odour patrol survey. Copies of the calibration certificates of the equipment are shown in **Appendix A4**.

Table 4.1 Equipment for Odour Monitoring Program

Equipment	Model and Make	Qty.
Thermo-Anemometer	AZ Instrument (Model No. AZ8904)	1

Calibration of In Situ Instruments

- 4.12 All in situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use.
- 4.13 The thermo-anemometer shall be checked and calibrated at yearly intervals.
- 4.14 Backup monitoring equipment shall be available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.

Odour Patrol Results and On-Site Observations

- 4.15 All results of odour patrol survey for 60 sniffing locations in February 2013 are summarized in Table 4.2 for different routes within Kai Tak Development and Ma Tau Kok Waterfront and the field record sheets are attached in **Appendix E4**.
- 4.16 In addition, meteorological conditions (including temperature, wind speed, wind direction, relative humidity) from the nearest Hong Kong Observatory's Weather Station including King's Park and Kai Tak meteorological stations during the monitoring are provided in **Appendix F**.
- 4.17 During the odour patrol investigation, our patrol members identified different types of flavours including seawater smell, sewage, rubbish, dead fish and fishy smell. It is identified by the odour patrol members that these types of flavours mainly result from marine water, water at Kai Tak Nullah, exposed shores and other activities near the sniffing locations.
- 4.18 According to Kai Tak Schedule 3 EIA Report, the seawater smell is considered as non-objectionable background smell.
- 4.19 The odour intensity detected at 60 locations was found to be in a wide range from level 0 up to level 1.

 $Table\ 4.2-Summary\ of\ Odour\ Patrol\ Results\ in\ February\ 2013$

Sniffing	Area		Odour	Intensit	y	General On-site	Observation
Location		Low To		High T (Eveni Night t	ng/	Odour nature	Possible source
		OI-1	OI-2	OI-1	OI-2		
1	Kwun Tong	0	0	0	0	N/A	N/A
2	Typhoon	1	1	1	1	sewage	marine water
3	Shelter	1	1	1	1	sewage	marine water
4		1	1	1	1	sewage	marine water
5		0	0	0	0	seawater smell	marine water
6	Southern Kai Tak Approach	1	1	1	1	sewage	Chemical Toilet at SFK's Site Office
7	Channel	1	1	1	1	sewage	marine water
8	Northern Kai	1	1	1	1	sewage	marine water
9	Tak Approach	1	1	0	0	sewage	marine water
10	Channel	1	1	0	0	sewage	marine water
11		1	1	0	0	sewage	marine water
12		1	1	1	1	sewage	marine water
13		1	1	1	1	sewage	marine water
14		1	1	1	1	sewage, fishy and rubbish smell	marine water and exposed shores
15		1	1	0	0	sewage	marine water
16		0	0	0	0	N/A	N/A
17		0	0	0	0	N/A	N/A
18		1	1	0	0	rubbish and dead fish smell	marine water and exposed shores
19		0	1	0	0	sewage	marine water
20		0	0	0	0	N/A	N/A
21	Southern Kai	1	1	0	0	sewage	marine water

22	Tak Approach	0	0	0	0	N/A	N/A
23	Channel	0	0	0	0	N/A	N/A
24		0	0	0	0	N/A	N/A
25		0	0	0	0	N/A	N/A
26		0	0	0	0	N/A	N/A
27	Kai Tak	0	0	0	0	seawater smell	marine water
28	Runway	0	0	0	0	seawater smell	marine water
29		0	0	0	0	seawater smell	marine water
30		0	0	0	0	seawater smell	marine water
31		0	1	0	0	fishy smell	exposed shores
32		0	0	0	0	seawater smell	marine water
33		0	0	0	0	N/A	N/A
34		0	0	0	0	N/A	N/A
35		0	0	0	0	N/A	N/A
36	Ma Tau	0	0	0	0	N/A	N/A
37	Kok/To Kwan	0	0	1	1	sewage	marine water
38	Wan	1	1	1	1	sewage	marine water
39	waterfront	1	1	1	1	sewage	marine water
40		1	1	1	1	sewage	marine water
41	Upstream	0	0	0	0	N/A	N/A
42	section of Kai	1	1	1	1	sewage	water at Kai Tak Nullah
43	Tak Nullah	0	0	0	0	N/A	N/A
44		0	0	0	0	N/A	N/A
45	Downstream	1	1	1	1	sewage	water at Kai Tak Nullah
46	section of Kai	0	0	1	1	sewage	water at Kai Tak Nullah
47	Tak Nullah	1	1	0	0	sewage	water at Kai Tak Nullah
48	[0	0	1	1	sewage	water at Kai Tak Nullah
49	[0	0	1	1	sewage	water at Kai Tak Nullah
50	[1	1	1	1	sewage	water at Kai Tak Nullah
51		0	0	0	0	N/A	N/A

52		0	0	1	1	sewage	water at Kai Tak Nullah
53		0	0	1	1	sewage	water at Kai Tak Nullah
54		1	1	0	0	sewage	water at Kai Tak Nullah
55		0	0	0	0	N/A	N/A
56		0	0	0	0	N/A	N/A
57	Upstream	1	1	1	1	sewage	water at Kai Tak Nullah
58	section of Kai	1	1	0	0	sewage	water at Kai Tak Nullah
59	Tak Nullah	1	1	1	1	sewage	water at Kai Tak Nullah
60		1	1	0	0	sewage	water at Kai Tak Nullah

5. Sediment monitoring

Monitoring Locations

5.1 Thirteen monitoring stations are proposed for the sediment monitoring. The locations are also summarized in Table 5.1 and shown on **Figure 2**.

Table 5.1 Sediment Monitoring Stations

Location	Comming Location	Coord	Coordinates			
ID	Sampling Location	Easting	Northing			
SA1	Northern KTAC, in the vicinity of Kai Tak Nullah (KTN)	838744.13	820311.91			
SA2	Northern KTAC	838840.95	820030.07			
SA3	Northern KTAC, in the vicinity of Jordan Valley Culvert (JVC) Outfall	839163.99	819942.90			
SA4		839407.66	819537.90			
SA5	Southern KTAC	839580.35	819512.47			
SA6		839647.87	819329.45			
SA7		840122.60	819275.72			
SA8	KTTS	840270.71	819015.35			
SA9		840479.55	818798.14			
SA10	Kowloon Bay (between runway opening and TKWTS)	838694.90	819582.08			
SA11	MTK waterfront, at the end of Ma Tau Kok Road	838138.20	820038.77			
SA12	TKW waterfront, near Vehicle Examination Centre	837892.97	819704.84			
SA13	Hoi Sham Park waterfront	837857.15	819436.94			

Monitoring Parameters and Frequency

5.2 Table 5.2 summarizes the monitoring parameters and frequencies of the sediment monitoring.

 Table 5.2
 Sediment Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit	Frequency
SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13	 Laboratory Testing: Acid Volatile Sulphides (AVS), (mg/kg dry weight) Residual Nitrate, (mg NO₃-N/L wet weight) Reduction – Oxidation (Redox) Potential, (mV)/pH 	• Half-yearly

Sampling Procedure

- 5.3 A hand held differential Global Positioning System (GPS) was used during the sediment monitoring to ensure the sampling and monitoring are at the correct location. The depth of water, in metres below the Principal datum (mPD), was measured.
- 5.4 At each designated monitoring station, the undisturbed surface sediment core samples were collected by manual or gravity pushing the corer into the sediment. Care was taken in collecting the core to prevent contact with air or excessive mixing of the sample. The core was at least 0.8m in length. Core recovery was at least 60% and the core was immediately sealed after collection to prevent leakage of odour and liquids. Care was taken in sealing the core in order to prevent any gas leakage and to minimize the amount of air inside the core.
- 5.5 The core was properly labeled with information such as sampling ID, sample length, diameter and depth as well as sampling date and time.

Decontamination Procedures

5.6 Sampling equipment used during the course of the investigation programme was decontaminated by manual washing and fresh water rinsing after each sampling event. All disposable equipment was discarded after each use.

Method of Sample Handling Storage and Transportation

5.7 The core samples were immediately stored, transported and maintained at 4°C or lower without being frozen in dark prior to any laboratory testing. All core samples were packed and transported in such a manner as to avoid shock, vibration or any other

disturbance of the samples. Core samples were delivered to Wellab Ltd. (HOKLAS Registration No.083) after collection on the same day. All samples were handled under chain of custody protocols, delivered to Wellab Ltd.

Details of Testing

5.8 The collected sediment core samples with diameter of 100mm (from top to approximately 10cm in depth) were tested. The reporting limit, preparation method, determination method and the parameters to be tested are shown in Table 5.3.

Table 5.3 Testing Parameters, Reporting Limit and Analytical Method

Parameters, unit	Reporting Limit	Preparation Method USEPA Method	Determination Method USEPA Method
Acid Volatile Sulphides (mg/kg dry weight)	1	N/A	Draft Analytical Method for Determination of Acid Volatile Sulfide in Sediment. Office of Water Regulations and Standards (1991), (USEPA 821-R-91- 100)
Redox (mV)	1	N/A	WTW pH/redox meter (or
рН	0.1	N/A	equivalent) calibrated to ISO9002 Standards
Residual Nitrate (mg NO ₃ -N/L wet weight)	0.05	N/A	APHA 4500 NO ₃ -E and 4500 NO ₂ -B

QA/QC Requirements

- 5.9 All laboratory tests were conducted by laboratory accredited by Hong Kong Laboratory Accreditation Scheme (HOKLAS) Wellab Ltd. (HOKLAS Registration No.083).
- 5.10 The following quality control programme was performed for laboratory testing:
 - ♦ Method blank;
 - ♦ Duplicate (at 5% level i.e. one for every 20 samples); and
 - ♦ Matrix Spike (at 5% level i.e. one for every 20 samples).

Quality Controls	Acceptance Criteria
Method Blank	Less than method detection limit (MDL)
Duplicate	Confine within \pm 25% of the mean of duplicated results
Matrix Spike	Confine within \pm 25% of the recovery of spike concentration

Monitoring Equipment

Water Depth Detector

5.11 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Position System

- 5.12 A hand held differential Global Positioning System (GPS) was used during sediment monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 5.13 Table 5.4 summarizes the equipment used in the sediment monitoring program. Copies of the calibration/performance check records of the equipments used in the sediment monitoring and calibration certificates of mV Meter shown in **Appendix A3**. The equipment of flow injection analyzer and UV/Vis Spectrophotometer were checked/calibrated regularly every six months and three months regularly.

Table 5.4 Equipment for Sediment Monitoring Program

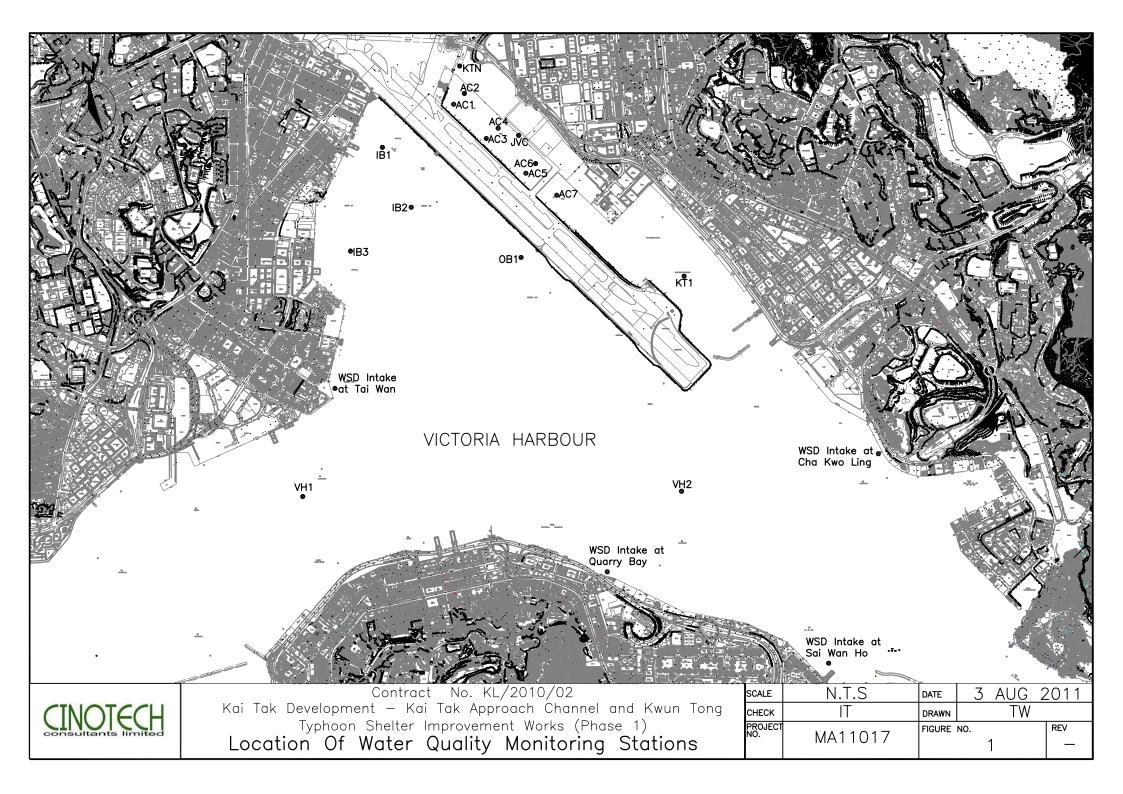
Equipment	Model and Make	Qty.
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	1
Water Depth Detector	Fishfinder 140	1
mV Meter	TM39	1
pH Meter	Milwaukee pH600	1

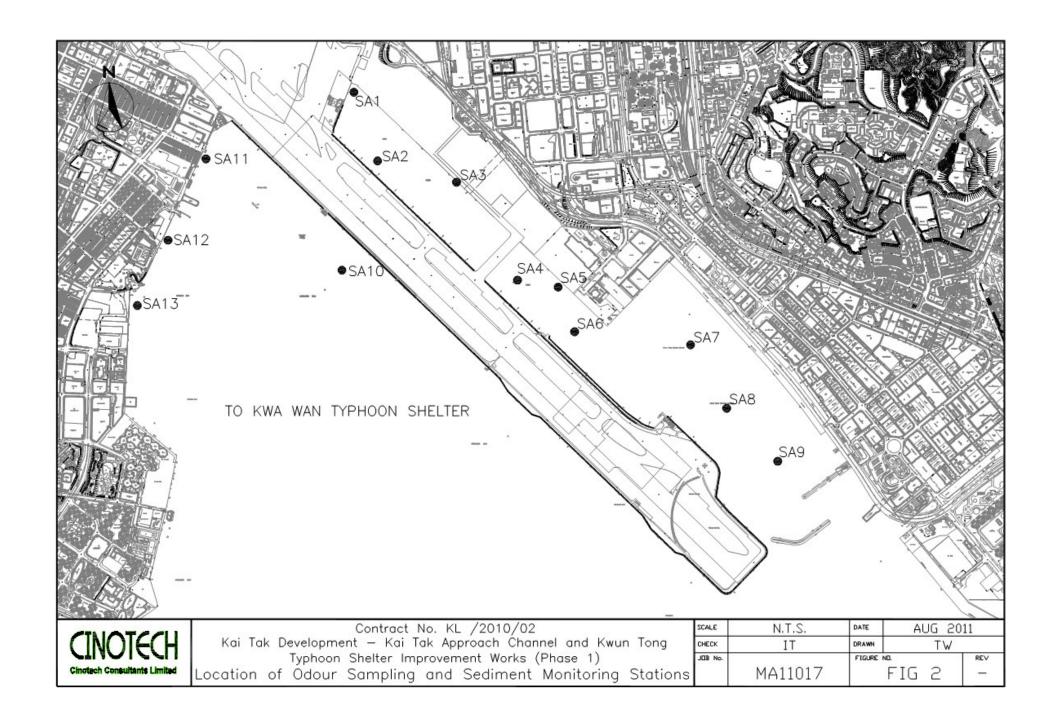
Results and Observation

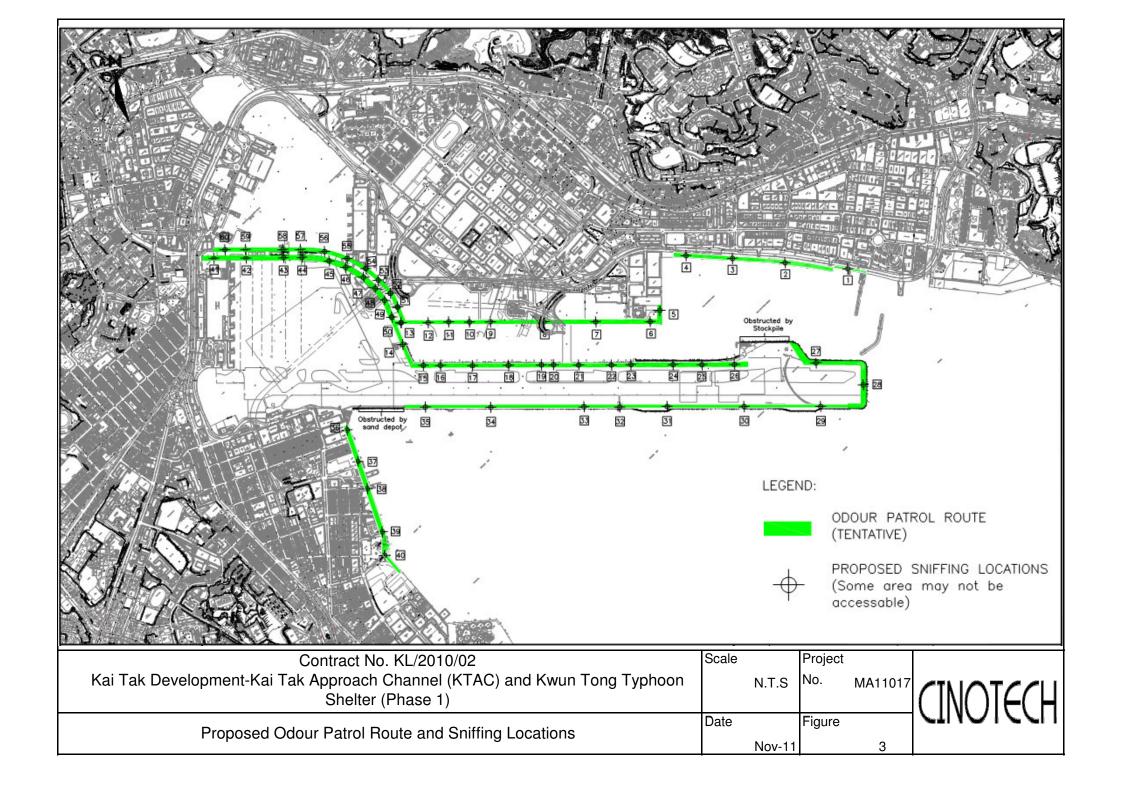
- 5.14 The sediment monitoring schedule in the reporting period is provided in **Appendix B**.
- 5.15 The sediment monitoring was conducted on 28th February 2013.
- 5.16 The weather during the sampling was cloudy.
- 5.17 No marine activities were conducted in the vicinity of the stations during the monitoring.
- 5.18 The laboratory testing report of the collected sediment samples and QC report are provided in **Appendix C3** and **Appendix D2** respectively.
- 5.19 The sediment sampling data record sheet is provided in **Appendix E3**.

5.20

The depth of water at each of the sediment monitoring stations is shown in Table 5.5.


Table 5.5 Water Depth at Sediment Monitoring Stations


Location ID	Sampling Location	Water Depth, mPD
SA1	Northern KTAC, in the vicinity of Kai Tak Nullah (KTN)	2.7
SA2	Northern KTAC	3.1
SA3	Northern KTAC, in the vicinity of Jordan Valley Culvert (JVC) Outfall	3.2
SA4		4.2
SA5	Southern KTAC	4.0
SA6		5.4
SA7		5.0
SA8	KTTS	6.0
SA9		6.1
SA10	Kowloon Bay (between runway opening and TKWTS)	5.3
SA11	MTK waterfront, at the end of Ma Tau Kok Road	4.3
SA12	TKW waterfront, near Vehicle Examination Centre	5.2
SA13	Hoi Sham Park waterfront	3.6


6. Conclusion

- 6.1 Environmental monitoring works for water quality, odour and sediment were performed in February 2013 and all monitoring results were checked and reviewed.
- The next general water quality monitoring and odour patrol will be conducted in May 2013 and sediment monitoring and odour sampling will be conducted in August 2013.

FIGURES

APPENDIX A1 COPIES OF CALIBRATION CERTIFICATES FOR WATER QUALITY MONITORING

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/121215-1
Date of Issue: 2012-12-15
Date Received: 2012-12-15
Date Tested: 2012-12-15
Date Completed: 2012-12-15
Next Due Date: 2013-02-14

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M : 02D0126AA

Serial No. Equipment No.

: W.03.01

Test conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 63%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 11J100025

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 07E100029

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 11J1000475

1. Calibration check with Formazin standard solution

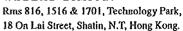
pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:


- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/121215-1 Date of Issue: 2012-12-15 Date Received: 2012-12-15 Date Tested: 2012-12-15 Date Completed: 2012-12-15 Next Due Date: 2013-02-14

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/121215-3 Date of Issue: 2012-12-15 Date Received: 2012-12-15 Date Tested: 2012-12-15

Date Completed:

2012-12-15

Next Due Date:

2013-02-14

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6920-M : 03H1764AA

Serial No. Equipment No.

: W.03.03

Test conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 63%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 03H1461

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 08C100610

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 09M100672

1. Calibration check with Formazin standard solution

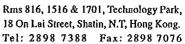
pH Meter, Model: 6561, L/N: 07E

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:


- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

agent and the second	ay'n igsgangstundsstatungstagtung met men men men met gestellt an det det staten.
Test Report No.:	C/W/121215-3
Date of Issue:	2012-12-15
Date Received:	2012-12-15
Date Tested:	2012-12-15
Date Completed:	2012-12-15
Next Due Date:	2013-02-14

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2]
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

T-4 D	In c	
Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _j , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH_s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

	Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
Į	1.0	1.00	0.00	1.00 ± 0.05

APPENDIX A2 COPIES OF CALIBRATION CERTIFICATES FOR ODOUR SAMPLING

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/130202-1 Date of Issue: 2013-02-02 Date Received: 2013-02-02

Date Tested: 2013-02-02 Date Completed: 2013-02-02

Next Due Date: 2013-05-01

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M : 02D0293AA

Serial No. Equipment No.

: W.03.02

Test conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 62%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B100106

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

1. Performance check against Winkler titration Turbidity Sensor, Model: 6136, S/N: 12B100900

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual

 In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/130202-1
Date of Issue: 2013-02-02
Date Received: 2013-02-02
Date Tested: 2013-02-02
Date Completed: 2013-02-02
Next Due Date: 2013-05-01

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1) Theoretical Value (C2)		D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/12/120501
Date of Issue:	2012-05-02
Date Received:	2012-05-01
D + T + 1	2012 05 01

Date Tested: 2012-05-01 Date Completed: 2012-05-02

Next Due Date:

2012-03-02

ATTN:

Mr. W.K Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: RS232 Integral Vane Digital Anemometer

Manufacturer

: AZ Instrument

Model No.

: AZ8904

Serial No.

: 974835

Equipment No.

: A-03-03

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67%

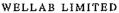
Pressure

: 101.2 kPa

Methodology:

The anemometer has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:


	Reference Set Point	Instrument Readings
Measuring Air Velocity, m/s	2.00	2.00
Temperature, °C	21.0	21.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB 匯 Testing & Research 力 Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/W/121214-1
Date of Issue:	2012-12-14
Date Received:	2012-12-14
Date Tested:	2012-12-14
Date Completed:	2012-12-14
Next Due Date:	2013-03-13

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Portable pH/Temp/Redox TM39 Meter with Redox

(ORP) combination electrode for TM39

Model No.

: TM39

Serial No.

: 020139

Equipment No.

: W.06.01, W.06.02

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 62%

Test Specifications & Methodology:

pH performance check: ISO 9002 Standards
 Redox performance check: ISO 9002 Standards

Results:

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	< 0.05
Shift on stirring ΔpH _s , pH unit	0.00	< 0.02
Noise ΔpH _n , pH unit	0.00	< 0.02
Temperature, °C	20	20±1

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

APPENDIX A3
COPIES OF CALIBRATION
CERTIFICATES FOR SEDIMENT
MONITORING

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/W/121214-1
Date of Issue:	2012-12-14
Date Received:	2012-12-14
Date Tested:	2012-12-14
Date Completed:	2012-12-14
Next Due Date:	2013-03-13

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : Portable pH/Temp/Redox TM39 Meter with Redox

(ORP) combination electrode for TM39

Model No.

: TM39

Serial No.

: 020139

Equipment No.

: W.06.01, W.06.02

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 62%

Test Specifications & Methodology:

1. pH performance check: ISO 9002 Standards

2. Redox performance check: ISO 9002 Standards

Results:

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	< 0.05
Shift on stirring ΔpH_s , pH unit	0.00	< 0.02
Noise ΔpH _n , pH unit	0.00	< 0.02
Temperature, °C	20	20±1

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

. Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 17803

Date of Issue: 2013-02-25

Date Received: 2013-02-25

Date Tested: 2013-02-25

Date Completed: 2013-02-25

Next Due Date: 2013-03-10

ATTN:

Miss Mei Ling Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: pH Meter

Manufacturer

: Milwaukee

Model No. Equipment No. : pH600 : P.01.05

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 65%

Test Specifications & Methodology:

Calibration of instrument in according to ISO 10523, Section 9.1

Results:

3 Less than 0.05
2 Less than 0.02
1 Less than 0.02

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Calibration/ Performance Check Requested: Flow Injection Analyzer (FIA)

Method Used: CMP 022

I. Pump			
Equipment No.: [222]	Timer used:	<u>Eost</u>	
Time the pump takes to make 10 revolutions:	Lea seconds (Pass) Fail)		

50 ±1second for 10 revolutions

II. Heating modules

Acceptance Criteria:

Equipment No.:

Thermocouple used: 550.

Channel No.	Set Temp °C	Measured Temp, °C	Difference	Pass/Fail
1	60	60.9	+0.9	Pass
2	37	369	-0.1	Pass.
3	60	61.1	~ (. l	Pass.

Acceptance Criteria:

± 2°C for the set temperature

Analyst: WZ-TR

Date: $\frac{12}{12013}$

Checked by:_

Date: 24/1/2013

Analyst

Checked By

Date Analysed Date Checked

Performance Check of UV/Vis Spectrophotometer (CMP020)

Equipment No.

EO26

Record:

Wavelength check

SRM Band No.	Certified Wavelength, nm	Instrument Reading, nm	Derivation, nm
1	241.13	241.41	0.Yf
2	249.87	249.92	20.0
3	278.10	278.26	0.13
4	287.18	287-33	0.15
5	333.44	333.76	0.32
6	345.47	345.82	o. 35
7	361.31	261.50	0.19
8	385.66	385.78	0.12
9	416.28	416.30	0.02
10	451.30	471.45	0.15
11	467.83	467.98	0.15
12	485.29	485.41	0.12
13	536.64	536.88	0.24
14	640.52	640.70	0-18
Criteria: Derivation	of λ _{max} for Holmium Oxide solu	tion should be less than ± 1 nm	

Linearity check

Analytical wavelength: 512 nm

Concentration of cobalt chloride solution, N	Absorbance
0.0000	0-0000
0.0050	0,0397
0.0100	0,0805
0.0500	01417
0.1000	0.8489
0.2000	1-6937
Regression coefficient:	1 - 67 5

Note

: Regression coefficient of calibration curve should be at least 0.9999.

Calibration Record

WELLAB

Analyst	
Checked	Ву

MAN

Date Analysed Date Checked

: 4-1-2013 : 04/61/2013

Stray radiation

Spectral Range,	Test Wavelength,	Liquid	Stray radiation, %
nm	nm		
210 – 259	220	10g/L aqueous NaI or KI	< \
250 - 320	285	Acetone	< 1
300 - 385	350	50g/L aqueous NaNO ₂	<

Absorbance accuracy

Wavelength, nm	Expected Absorbance	Measured Absorbance
235	0.747	0.7472
257	0.864	0.8643
313	0.292	0.1925
350	0.640	0.6402

Zero absorbano	e line flatness
----------------	-----------------

Maximum value - minimum value =	0-0000	_	0.000	=	0.000	(D)

Criteria: D should be less than 0.01 Abs

Status of instrument:	Pass
Status of monuniont.	1.00

Wavelenght and Absorbance(Visible region) check

Wavelength, nm	Expected Absorbance	Measured Absorbance
600	0.068	0.0712
650	0.224	0.1331
700	0.527	0.5389
750	0.817	0.8404

APPENDIX A4
COPIES OF CALIBRATION
CERTIFICATES FOR ODOUR
PATROL

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/12/120501
Date of Issue: 2012-05-02
Date Received: 2012-05-01
Date Tested: 2012-05-01

Date Completed: 2 Next Due Date: 2

2012-05-02 2013-05-01

ATTN:

Mr. W.K Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: RS232 Integral Vane Digital Anemometer

Manufacturer

: AZ Instrument

Model No.

: AZ8904

Serial No. Equipment No.

: 974835 : A-03-03

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67%

Pressure

: 101.2 kPa

Methodology:

The anemometer has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

	Reference Set Point	Instrument Readings
Measuring Air Velocity, m/s	2.00	2.00
Temperature, °C	21.0	21.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TSE

Laboratory Manager

APPENDIX A5 CERTIFICATE FOR QUALIFIED ODOUR PANEL MEMBER

WELLAB LIMITED
Rms 816, 1516 &1701, Technology Park,
18 On Lai Street, Shatin, N.T, Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: 17622
Date of Issue: 2013-01-16

Date Tested: 2013-01-10

Date Completed: 2013-01-16

ATTN:

Ms Ivy Tam

Page:

1 of 1

Certificate of Qualified Odour Panel Member

Mr. Tang Wing-Kwai

Test Requested & Methodology:

An odour screening test was conducted for odour panel applicants at Wellab Ltd. to determine the thresholds of odour panel candidate according to the requirement of European Standard Method (EN13725). Standard n-butanol gas with a certified concentration of 50 ppm/v was applied as reference material and the n-butanol thresholds in the range of 20 to 80 ppb/v was determined by the olfactomery measurements on three separate sessions on 10th, 14th and 16th January 2013, respectively.

Results:

Standard deviation of n-butanol thresholds in the range of 20 to 80 ppb/v, R	Requirement of EN13725	Comment
1.28	<2.3	Pass

Certification:

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.:	17622A
Date of Issue:	2013-01-16
Data Tantadi	2012 01 10

Date Tested: 2013-01-10 Date Completed: 2013-01-16

ATTN: Ms Ivy Tam Page: 1 of 1

Certificate of Qualified Odour Panel Member

Mr. Lee Man-Hei

Test Requested & Methodology:

An odour screening test was conducted for odour panel applicants at Wellab Ltd. to determine the thresholds of odour panel candidate according to the requirement of European Standard Method (EN13725). Standard n-butanol gas with a certified concentration of 50 ppm/v was applied as reference material and the n-butanol thresholds in the range of 20 to 80 ppb/v was determined by the olfactomery measurements on three separate sessions on 10th, 14th and 16th January 2013, respectively.

Results:

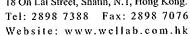
Standard deviation of n-butanol thresholds in the range of 20 to 80 ppb/v, R	Requirement of EN13725	Comment
1.25	<2.3	Pass

Certification:

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager


APPENDIX B ENVIRONMENTAL MONITORING SCHEDULE

Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1) Odour, Sediment and Water Quality Monitoring Schedule for February 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		·	-	•	1-Feb	2-Feb
3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb	9-Feb
					Water Quality Monitoring (7th)	
					Mid-Ebb 11:11 Mid-Flood 16:21	
					Mid-F100d 10:21	
10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb	16-Feb
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb	23-Feb
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb		
	Odour Patrol	Odour Patrol	Odour Sampling (4th)			
	Daytime - Low Tide	Daytime - Low Tide		Sediment Monitoring (4th)		
H	Evening/Night Time - High Tide	Evening/Night Time - High Tide	Low Tide 16:07			
	1 .:11: C .: CH	W 01				

Remark: Reference was made to the tidal information of Hong Kong Observatory

APPENDIX C1
LABORATORY TESTING REPORT
FOR WATER QUALITY
MONITORING

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

	And a Community of the
Laboratory No.:	17723
Date of Issue:	2013-04-08
Date Received:	2013-02-08
Date Tested:	2013-02-08
Date Completed:	2013-04-08

ATTN:

Miss Mei Ling Tang

Page:

1 of 31

Sample Description

: 180 liquid samples as received by customer said to be water

Project No.

: MA11017

Project Name: Contract No. KL/2010/02 Kai Tak Development – Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No.

: MA11017/130208

Sampling Date : 2013-02-08

Test Requested & Methodology:

	Requested & Methodology:	D - C 3 5 - 41 - 3	Limit of Donouting	
Item	Parameters	Ref. Method	Limit of Reporting	
1	Suspended Solids (SS)	APHA 17ed 2540 D	*0.5 mg/L	
2	E. coli	In-house method SOP069 (Membrane	1 cfu/100mL	
		Filtration Method by CHROMagar)		
3	5-day Biochemical Oxygen	APHA 19ed 5210 B	2 mg-O₂/L	
	Demand (BOD ₅)			
4	Ammonia Nitrogen (NH ₃ -N)	In-house method SOP057 (FIA)	*0.01 mg NH ₃ -N/L	
5	Unionized Ammonia (UIA)	By Calculation	0.001 mg/L	
6	Total Kjeldahl Nitrogen (TKN)	In-house Method SOP058 (FIA)	*0.1 mg N/L	
7	Nitrite-nitrogen (NO ₂ -N)	In-house Method SOP068 (FIA)	*0.002 mg NO ₂ -N/L	
8	Nitrate-nitrogen (NO ₃ -N)	In-house Method SOP056 (FIA)	*0.01 mg NO ₃ -N/L *0.01 mg PO ₄ ³ -P/L	
9	Ortho-phosphate (PO ₄)	rtho-phosphate (PO ₄) In-house Method SOP054 (FIA)		
10	Total Phosphorous (TP)	al Phosphorous (TP) In-house Method SOP 055 (FIA)		
11	Cadmium (Cd)	In-house Method SOP 053 (ICP-ES) and	*0.1 μg/L	
12	Chromium (Cr)	SOP 076 (ICP-MS)	*0.2 μg/L	
13	Copper (Cu)		*0.2 μg/L	
14	Mercury (Hg)		*0.2 μg/L	
15	Nickel (Ni)		*0.2 μg/L	
16	Lead (Pb)		*0.2 μg/L	
17	Silver (Ag)		*0.2 μg/L	
18	Zinc (Zn)		*0.4 μg/L	

Remark: 1) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 17723

 Date of Issue:
 2013-04-08

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

2 of 31

Results:

Results:						
Sample ID	AC1-a	AC1-b	AC1-a	AC1-b	AC2-a	AC2-b
Sampling Depth	S	S	В	В	S	S
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-1	17723-105	17723-3	17723-107	17723-4	17723-108
Suspended Solids (SS), mg/L	12,3	12.1	11.3	11.3	5.1	5.2
E. coli, cfu/100mL	8,200	8,100	4,400	4,500	6,000	6,200
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.57	0.57	0.59	0.60	0.73	0.74
Unionized Ammonia (UIA), mg/L	0.004	0.004	0.007	0.007	0.007	0.006
Total Kjeldahl Nitrogen (TKN), mg N/L	1.1	1.1	1.3	1.3	1.6	1.6
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.109	0.112	0.136	0.130	0.125	0.126
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.49	4.54	6.05	6.25	6.50	6.49
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.11	1.07	1.50	1.53	1.67	1.67
Total Phosphorous (TP), mg-P/L	1.25	1.30	1.68	1.70	1.95	2.00
Cadmium (Cd), μg/L	0.2	0.2	0.5	0.5	<0.1	<0.1
Chromium (Cr), µg/L	1.2	1.3	1.4	1.5	2.3	2.3
Copper (Cu), µg/L	7.1	7.3	7.1	7.0	6.2	6.3
Mercury (Hg), μg/L	0.2	0.2	0.3	0.3	0.2	0.2
Nickel (Ni), μg/L	2.3	2.2	1.8	1.7	1.7	1.7
Lead (Pb), μg/L	1.3	1.3	1.1	1.2	1.3	1.3
Silver (Ag), μg/L	0.2	0.2	< 0.2	<0.2	< 0.2	< 0.2
Zinc (Zn), μg/L	17.3	18.0	22.4	23.8	12.7	12.8

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

3 of 31

Dogultor

Results:						
Sample ID	AC2-a	AC2-b	AC3-a	AC3-b	AC3-a	AC3-b
Sampling Depth	В	В	S	S	В	В
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-6	17723-110	17723-7	17723-111	17723-9	17723-113
Suspended Solids (SS), mg/L	5.4	5.5	5.5	5.6	5.8	5.7
E. coli, cfu/100mL	3,000	2,900	4,000	4,000	4,200	4,300
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.56	0.57	1.29	1.30	1.45	1.45
Unionized Ammonia (UIA), mg/L	0.005	0.009	0.017	0.017	0.030	0.028
Total Kjeldahl Nitrogen (TKN), mg N/L	0.6	0.6	2.0	2.0	2.2	2.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.131	0.134	0.252	0.249	0.284	0.284
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	7.26	7.34	5.33	5.29	5.65	5.61
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	1.83	1.87	1.46	1.42	1.55	1.57
Total Phosphorous (TP), mg-P/L	2.12	2.10	1.73	1.80	1.70	1.80
Cadmium (Cd), μg/L	0.3	0.3	0.1	0.1	<0.1	< 0.1
Chromium (Cr), μg/L	3.1	2.9	2.9	2.8	1.1	1.1
Copper (Cu), µg/L	6.7	6.9	5.6	5.5	7.3	7.4
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	1.1	1.0	1.5	1.5	2.0	1.8
Lead (Pb), μg/L	0.9	0.9	0.9	1.0	0.8	0.8
Silver (Ag), µg/L	0.2	0.2	<0.2	<0.2	< 0.2	<0.2
Zinc (Zn), μg/L	8.6	9.2	9.6	9.2	16.3	16.2

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

4 of 31

Doculter

Results:						
Sample ID	AC4-a	AC4-b	AC4-a	AC4-b	AC5-a	AC5-b
Sampling Depth	S	S	В	В	S	S
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-10	17723-114	17723-12	17723-116	17723-13	17723-117
Suspended Solids (SS), mg/L	2.9	3.1	6.8	6.5	5.4	5.4
E. coli, cfu/100mL	5,000	5,200	4,600	4,500	1,900	2,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.09	1.08	1.19	1.17	1.44	1.44
Unionized Ammonia (UIA), mg/L	0.006	0.006	0.024	0.024	0.007	0.009
Total Kjeldahl Nitrogen (TKN), mg N/L	1.9	1.9	1.9	1.9	2.2	2.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.215	0.216	0.220	0.222	0.267	0.264
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	6.91	7.14	6.20	5.95	5.73	5.86
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.76	1.78	1.57	1.61	1.62	1.59
Total Phosphorous (TP), mg-P/L	2.03	2.10	1.87	1.80	1.77	1.70
Cadmium (Cd), μg/L	0.4	0.4	0.1	0.1	0.5	0.5
Chromium (Cr), µg/L	1.7	1.7	2.3	2.3	2.4	2.4
Copper (Cu), μg/L	8.3	8.5	6.0	6.0	7.3	7.6
Mercury (Hg), μg/L	<0.2	<0.2	0.3	0.3	0.2	0.2
Nickel (Ni), μg/L	1.9	2.0	3.0	2.9	2.3	2.5
Lead (Pb), μg/L	1.1	1.1	0.6	0.6	0.5	0.6
Silver (Ag), μg/L	<0.2	<0.2	0.2	< 0.2	< 0.2	<0.2
Zinc (Zn), μg/L	17.4	16.8	22.2	23.1	11.1	11.3

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

5 of 31

Results:						
Sample ID	AC5-a	AC5-b	AC6-a	AC6-b	AC6-a	AC6-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-15	17723-119	17723-16	17723-120	17723-17	17723-121
Suspended Solids (SS), mg/L	8.8	8.7	5.7	5.7	5.6	5.7
E. coli, cfu/100mL	1,700	1,700	2,700	2,700	3,200	3,200
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.76	0.74	1.40	1.34	1.43	1.44
Unionized Ammonia (UIA), mg/L	0.020	0.020	0.009	0.009	0.037	0.031
Total Kjeldahl Nitrogen (TKN), mg N/L	1.2	1.2	1.9	1.9	1.9	1.9
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.126	0.128	0.235	0.244	0.245	0.243
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.68	3.56	5.45	5.54	5.53	5.53
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.76	0.77	1.38	1.36	1.41	1.40
Total Phosphorous (TP), mg-P/L	0.88	0.90	1.62	1.60	1.63	1.60
Cadmium (Cd), μg/L	0.1	0.1	0.1	0.1	0.1	0.1
Chromium (Cr), µg/L	3.1	3.1	2.5	2.4	2.5	2.5
Copper (Cu), µg/L	7.2	7.2	7.1	7.0	6.5	6.6
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.2	2.3	2.1	2.0	2.6	2.5
Lead (Pb), μg/L	0.8	0.8	0.6	0.6	0.8	0.8
Silver (Ag), μg/L	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2
Zinc (Zn), μg/L	18.6	17.6	18.5	19.3	19.1	19.0

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 17723

 Date of Issue:
 2013-04-08

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

6 of 31

Results:

Results:						
Sample ID	AC6-a	AC6-b	AC7-a	AC7-b	AC7-a	AC7-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-18	17723-122	17723-19	17723-123	17723-20	17723-124
Suspended Solids (SS), mg/L	5.9	6.1	7.2	7.0	5.5	5.7
E. coli, cfu/100mL	4,400	4,400	1,100	1,100	1,000	1,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.55	1.55	1.37	1.40	1.10	1.11
Unionized Ammonia (UIA), mg/L	0.046	0.046	0.010	0.014	0.028	0.028
Total Kjeldahl Nitrogen (TKN), mg N/L	2.4	2.4	2.1	2.1	1.6	1.7
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.296	0.292	0.294	0.291	0.130	0.129
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	5.95	6.05	5.12	5.15	2.11	2.09
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.58	1.53	1.42	1.40	0.83	0.88
Total Phosphorous (TP), mg-P/L	1.84	1.80	1.61	1.60	1.12	1.13
Cadmium (Cd), μg/L	0.3	0.3	0.1	0.1	0.1	0.1
Chromium (Cr), μg/L	2.5	2.5	1.6	1.5	1.6	1.5
Copper (Cu), μg/L	6.1	6.0	5.1	5.4	5.5	5.5
Mercury (Hg), μg/L	0.3	0.3	0.3	0.3	0.3	0.3
Nickel (Ni), μg/L	3.1	3.0	1.8	1.9	1.6	1.7
Lead (Pb), μg/L	1.3	1.3	0.6	0.6	0.7	0.7
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	22.5	23.2	13.5	13.7	14.4	14.1

Remark: $1) \le 1$ less than

TEST REPORT

Laboratory No.: Date of Issue:

17723 2013-04-08

Date Received:

2013-02-08

Date Tested:

2013-02-08

Date Completed:

2013-04-08

Page:

7 of 31

Results:

	,	,	r		
AC7-a	AC7-b	KT1-a	KT1-b	KT1-a	KT1-b
В	В	S	S	M	M
Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
17723-21	17723-125	17723-22	17723-126	17723-23	17723-127
3.2	3.2	8.3	8.4	11.3	11.3
940	930	270	270	210	210
<2	<2	<2	<2	<2	<2
0.38	0.38	0.44	0.43	0.20	0.20
0.012	0.012	0.008	0.011	0.006	0.007
0.7	0.7	0.9	0.9	0.5	0.5
0.068	0.067	0.093	0.095	0.044	0.045
1.66	1.62	1.98	2.03	1.03	1.06
0.33	0.32	0.38	0.38	0.19	0.20
0.76	0.80	0.45	0.50	0.45	0.50
0.2	0.2	0.1	0.1	0.2	0.2
1.8	1.7	2.4	2.4	2.5	2.4
7.9	8.1	6.4	6.4	7.8	7.5
0.3	0.3	< 0.2	<0.2	0.2	0.2
1.6	1.7	1.8	1.8	1.8	1.7
0.9	0.9	0.7	0.7	1.3	1.2
<0.2	<0.2	< 0.2	<0.2	0.2	0.2
21.9	21.7	16.6	17.2	15.8	15.6
	B Mid-Ebb 17723-21 3.2 940 <2 0.38 0.012 0.7 0.068 1.66 0.33 0.76 0.2 1.8 7.9 0.3 1.6 0.9 <0.2	B B Mid-Ebb Mid-Ebb 17723-21 17723-125 3.2 3.2 940 930 <2	B B S Mid-Ebb Mid-Ebb Mid-Ebb 17723-21 17723-125 17723-22 3.2 3.2 8.3 940 930 270 <2	B B S S Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb 17723-21 17723-125 17723-22 17723-126 3.2 3.2 8.3 8.4 940 930 270 270 <2	B B S S M Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb 17723-21 17723-125 17723-22 17723-126 17723-23 3.2 3.2 8.3 8.4 11.3 940 930 270 270 210 <2

Remark: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 2013-02-08 Date Tested: Date Completed: 2013-04-08

8 of 31 Page:

Doculter

Results:						
Sample ID	KT1-a	KT1-b	IB1-a	⊞1-b	IB1-a	IB1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-24	17723-128	17723-25	17723-129	17723-26	17723-130
Suspended Solids (SS), mg/L	5.7	5.8	6.9	7.0	11.0	10.8
E. coli, cfu/100mL	240	230	5,000	5,200	7,800	7,600
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.17	0.17	0.18	0.18	0.20	0.20
Unionized Ammonia (UIA), mg/L	0.006	0.006	0.009	0.010	0.011	0.011
Total Kjeldahl Nitrogen (TKN), mg N/L	0.4	0.4	0.5	0.5	0.5	0.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.036	0.036	0.022	0.022	0.022	0.023
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.76	0.75	0.27	0.26	0.27	0.27
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.15	0.15	0.09	0.10	0.10	0.10
Total Phosphorous (TP), mg-P/L	0.17	0.20	0.12	0.10	0.14	0.12
Cadmium (Cd), μg/L	0.4	0.4	0.3	0.3	0.2	0.2
Chromium (Cr), μg/L	2.3	2.2	1.0	1.1	2.5	2.5
Copper (Cu), μg/L	7.2	6.9	6.2	6.2	5.6	5.6
Mercury (Hg), μg/L	0.3	0.3	< 0.2	< 0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.2	1.2	1.2	1.1	1.2	1.1
Lead (Pb), μg/L	1.4	1.4	1.1	1.0	1.5	1.5
Silver (Ag), μg/L	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.8	20.4	14.0	14.4	12.5	11.9

Remark: $1) \le less than$

2) S = Surface, M = Middle, B = Bottom*****************************

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 2013-04-08 Date Completed:

Page:

9 of 31

Doculter

Results:						
Sample ID	IB1-a	IB1-b	IB2-a	IB2-b	IB2-a	IB2-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-27	17723-131	17723-28	17723-132	17723-29	17723-133
Suspended Solids (SS), mg/L	10.8	10.9	14.9	14.7	5.6	5.6
E. coli, cfu/100mL	5,600	5,600	1,700	1,700	2,100	2,100
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.20	0.20	0.17	0.17	0.34	0.34
Unionized Ammonia (UIA), mg/L	0.011	0.012	0.010	0.011	0.022	0.022
Total Kjeldahl Nitrogen (TKN), mg N/L	0.5	0.5	0.5	0.5	0.4	0.4
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.023	0.024	0.020	0.020	0.021	0.021
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.27	0.26	0.26	0.26	0.25	0.26
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.14	0.13	0.10	0.10	0.10	0.10
Total Phosphorous (TP), mg-P/L	0.17	0.20	0.11	0.10	0.12	0.10
Cadmium (Cd), µg/L	0.2	0.2	0.1	0.1	0.1	0.1
Chromium (Cr), µg/L	1.9	1.9	2.4	2.5	2.3	2.3
Copper (Cu), μg/L	5.5	5.6	5.4	5.5	5.8	5.8
Mercury (Hg), μg/L	0.3	0.3	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.7	2.6	2.9	3.0	1.8	1.7
Lead (Pb), μg/L	1.4	1.3	0.6	0.6	0.8	0.9
Silver (Ag), μg/L	< 0.2	<0.2	< 0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	8.9	8.4	17.1	16.9	13.5	13.5

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 2013-02-08 Date Tested: Date Completed: 2013-04-08

Page:

10 of 31

Results:

			r		I
IB2-a	IB2-b	IB3-a	IB3-b	IB3-а	IB3-b
В	В	S	S	M	M
Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
17723-30	17723-134	17723-31	17723-135	17723-32	17723-136
8.2	8.1	10.8	10.8	10.8	10.9
1,800	1,800	480	480	460	480
<2	<2	<2	<2	<2	<2
0.17	0.17	0.12	0.13	0.12	0.12
0.011	0.011	0.009	0.010	0.009	0.009
0.4	0.4	0.3	0.3	0.4	0.4
0.022	0.022	0.022	0.022	0.022	0.022
0.25	0.25	0.25	0.25	0.25	0.24
0.10	0.10	0.09	0.09	0.09	0.09
0.11	0.1 0	0.11	0.10	0.10	0.10
0.2	0.2	0.4	0.4	0.4	0.4
1.4	1.4	1.8	1.9	2.5	2.5
6.7	6.7	8.2	7.9	6.2	6.4
0.2	0.2	< 0.2	<0.2	0.2	0.2
1.9	1.9	2.0	1.9	1.5	1.4
0.9	0.9	1.4	1.4	1.4	1.4
<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2
22.2	21.8	19.4	19.2	17.7	17.5
	B Mid-Ebb 17723-30 8.2 1,800 <2 0.17 0.011 0.4 0.022 0.25 0.10 0.11 0.2 1.4 6.7 0.2 1.9 0.9 <0.2	B B Mid-Ebb Mid-Ebb 17723-30 17723-134 8.2 8.1 1,800 1,800 <2	B B S Mid-Ebb Mid-Ebb Mid-Ebb 17723-30 17723-134 17723-31 8.2 8.1 10.8 1,800 1,800 480 <2	B B S S Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb 17723-30 17723-134 17723-31 17723-135 8.2 8.1 10.8 10.8 1,800 1,800 480 480 <2	B B S S M Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb Mid-Ebb 17723-30 17723-134 17723-31 17723-135 17723-32 8.2 8.1 10.8 10.8 10.8 1,800 1,800 480 480 460 <2

Remark: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 17723

 Date of Issue:
 2013-04-08

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

11 of 31

Results:

Results:		,	··········			
Sample ID	IB3-a	IB3-b	OB1-a	OB1-b	OB1-a	OB1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-33	17723-137	17723-34	17723-138	17723-35	17723-139
Suspended Solids (SS), mg/L	2.8	2.9	4.7	4.7	6.2	6.1
E. coli, cfu/100mL	540	530	1,300	1,300	960	990
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.13	0.12	0.16	0.16	0.14	0.14
Unionized Ammonia (UIA), mg/L	0.011	0.010	0.011	0.011	0.009	0.011
Total Kjeldahl Nitrogen (TKN), mg N/L	0.3	0.3	0.4	0.4	0.3	0.3
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.020	0.019	0.022	0.022	0.022	0.023
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.25	0.26	0.25	0.25	0.24	0.23
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.09	0.09	0.10	0.10	0.10	0.10
Total Phosphorous (TP), mg-P/L	0.10	0.10	0.17	0.20	0.12	0.10
Cadmium (Cd), μg/L	0.1	0.1	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	1.2	1.2	1.2	1.2	1.4	1.4
Copper (Cu), μg/L	6.6	6.5	6.9	6.6	7.9	7.6
Mercury (Hg), μg/L	0.3	0.3	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.2	2.2	1.8	1.8	1.8	1.7
Lead (Pb), μg/L	0.8	0.9	1.6	1.5	1.0	1.0
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	19.6	19.7	15.4	15.5	12.7	12.9

Remark: $1) \le less than$

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

12 of 31

Doenlte.

Results:						
Sample ID	OB1-a	OB1-b	VH1-a	VH1-b	VH1-a	VH1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-36	17723-140	17723-37	17723-141	17723-38	17723-142
Suspended Solids (SS), mg/L	7.7	7.8	11.6	11.5	9.4	9,4
E. coli, cfu/100mL	540	550	1,100	1,100	1,000	1,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.08	0.08	0.08	0.08	0.09	0.09
Unionized Ammonia (UIA), mg/L	0.006	0.007	0.007	0.007	0.008	0.008
Total Kjeldahl Nitrogen (TKN), mg N/L	0.3	0.3	0.2	0.2	0.2	0.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.022	0.022	0.017	0.017	0.017	0.017
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.18	0.17	0.17	0.17	0.18	0.18
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.08	0.08	0.11	0.12	0.08	0.08
Total Phosphorous (TP), mg-P/L	0.09	0.10	0.17	0.20	0.10	0.10
Cadmium (Cd), μg/L	0.2	0.2	0.3	0.3	0.1	0.1
Chromium (Cr), μg/L	2.4	2.4	1.6	1.6	3.0	3.1
Copper (Cu), μg/L	8.1	8.5	5.4	5.3	7.1	7.4
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.9	1.8	2.5	2.4	2.0	2.0
Lead (Pb), μg/L	0.7	0.7	0.5	0.5	1.4	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), μg/L	14.1	13.7	9.1	8.7	18.3	18.2

Remark: $1) \le = less than$

2) S = Surface, M = Middle, B = Bottom

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

13 of 31

Reculte.

Results:						
Sample ID	VH1-a	VH1-b	VH2-a	VH2-b	VH2-a	VH2-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-39	17723-143	17723-40	17723-144	17723-41	17723-145
Suspended Solids (SS), mg/L	11.4	11.4	17.2	17.1	15.9	16.0
E. coli, cfu/100mL	1,200	1,200	2,400	2,500	200	200
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.09	0.09	0.09	0.09	0.10	0.10
Unionized Ammonia (UIA), mg/L	0.008	0.008	0.008	0.008	0.010	0.010
Total Kjeldahl Nitrogen (TKN), mg N/L	0.2	0.3	0.5	0.5	0.5	0.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.016	0.015	0.019	0.019	0.021	0.021
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.18	0.18	0.19	0.18	0.20	0.20
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.08	0.09	0.09	0.08	0.08	0.08
Total Phosphorous (TP), mg-P/L	0.11	0.10	0.11	0.10	0.11	0.10
Cadmium (Cd), µg/L	0.2	0.2	0.5	0.5	< 0.1	<0.1
Chromium (Cr), µg/L	2.4	2.5	2.8	2.7	1.9	1.9
Copper (Cu), µg/L	5.2	5.2	5.6	5.4	6.9	7.1
Mercury (Hg), μg/L	<0.2	<0.2	<0.2	<0.2	0.2	0.2
Nickel (Ni), μg/L	1.4	1.4	3.0	3.1	2.6	2.7
Lead (Pb), μg/L	1.3	1.3	1.2	1.2	0.8	0.8
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), µg/L	22.6	22.0	17.0	15.8	21.6	21.6

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: Date of Issue: 2012-05-22 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2012-05-22

Page:

14 of 31

Results:

Results:		,				I
Sample ID	VH2-a	VH2-b	KTN-a	KTN-b	JVC-a	JVC-b
Sampling Depth	В	В	M	M	S	S
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-42	17723-146	17723-44	17723-148	17723-46	17723-150
Suspended Solids (SS), mg/L	13.7	13.7	7.9	7.6	5.8	5.8
E. coli, cfu/100mL	220	220	69,000	68,000	51,000	50,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.08	0.08	0.64	0.65	2.24	2.26
Unionized Ammonia (UIA), mg/L	0.008	0.008	0.008	0.008	0.023	0.024
Total Kjeldahl Nitrogen (TKN), mg N/L	0.3	0.3	1.5	1.5	3.5	3.4
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.018	0.019	0.126	0.128	0.395	0.401
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.19	0.20	4.95	5.14	5.59	5.48
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.08	0.08	1.55	1.58	1.64	1.64
Total Phosphorous (TP), mg-P/L	0.10	0.10	2.06	2.10	2.02	2.00
Cadmium (Cd), μg/L	0.4	0.4	0.2	0.2	0.4	0.4
Chromium (Cr), μg/L	2.8	2.7	2.2	2.2	2.9	2.8
Copper (Cu), μg/L	6.9	7.2	7.7	7.9	5.5	5.6
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.2	1.2	1.3	1.3	1.3	1.3
Lead (Pb), μg/L	1.5	1.5	0.6	0.6	1.4	1.4
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	19.9	20.4	13.8	14.0	22.6	23.2

Remark: 1) < = less than

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

15 of 31 Page:

Results:

Results:		Γ			MOD	WOD
Sample ID	JVC-а	JVC-b	WSD Intake at Tai Wan-a	WSD Intake at Tai Wan-b	WSD Intake at Cha Kwo Ling-a	WSD Intake at Cha Kwo Ling-b
Sampling Depth	В	В	N/A	N/A	N/A	N/A
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb
Sample Number	17723-48	17723-152	17723-49	17723-153	17723-50	17723-154
Suspended Solids (SS), mg/L	7.5	7.4	5.1	5.2	4.8	4.8
E. coli, cfu/100mL	37,000	36,000	460	460	290	280
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.58	1.51	0.09	0.09	0.07	0.07
Unionized Ammonia (UIA), mg/L	0.038	0.036	0.008	0.008	0.003	0.003
Total Kjeldahl Nitrogen (TKN), mg N/L	2.4	2.4	0.3	0.3	0.2	0.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.240	0.245	0.018	0.018	0.016	0.016
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.37	4.38	0.20	0.20	0.17	0.17
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.16	1.18	0.14	0.14	0.11	0.11
Total Phosphorous (TP), mg-P/L	1.26	1.30	0.17	0.20	0.13	0.13
Cadmium (Cd), μg/L	0.3	0.3	0.3	0.3	0.4	0.4
Chromium (Cr), μg/L	2.1	2.0	1.0	1.0	1.6	1.6
Copper (Cu), µg/L	6.0	5.6	6.0	5.6	4.9	4.9
Mercury (Hg), μg/L	0.3	0.3	0.3	0.3	<0.2	<0.2
Nickel (Ni), μg/L	2.8	2.8	1.5	1.5	3.0	2.9
Lead (Pb), μg/L	1.1	1.1	1.1	1.1	0.6	0.6
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	17.0	16.8	12.9	12.9	12.9	12.2

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

 Laboratory No.:
 17723

 Date of Issue:
 2013-04-08

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page: 16 of 31

Results:

Results;		y				
Sample ID	WSD	WSD	WSD	WSD		
	Intake at	Intake at	Intake at	Intake at	AC1-a	AC1-b
	Quarry	Quarry	Sai Wan	Sai Wan	1101	
	Bay-a	Bay-b	Ho-a	Ho-b		
Sampling Depth	N/A	N/A	N/A	N/A	S	S
Tide	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Ebb	Mid-Flood	Mid-Flood
Sample Number	17723-51	17723-155	17723-52	17723-156	17723-53	17723-157
Suspended Solids (SS), mg/L	6.2	6.1	9.0	8.8	6.3	6.4
E. coli, cfu/100mL	780	800	300	310	4,400	4,300
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.07	0.07	0.06	0.06	0.46	0.46
Unionized Ammonia (UIA), mg/L	0.006	0.006	0.006	0.006	0.005	0.005
Total Kjeldahl Nitrogen (TKN), mg N/L	0.2	0.2	0.2	0.2	1,2	1.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.016	0.016	0.016	0.015	0.126	0.127
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.15	0.15	0.14	0.14	7.52	7.23
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.08	0.08	0.07	0.07	1.68	1.68
Total Phosphorous (TP), mg-P/L	0.12	0.10	0.11	0.10	1.76	1.80
Cadmium (Cd), µg/L	<0.1	<0.1	0.4	0.4	0.3	0.3
Chromium (Cr), μg/L	2.0	2.1	2.4	2.4	1.4	1.4
Copper (Cu), µg/L	7.9	7.8	5.3	5.5	7.3	7.6
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	1.5	1.5	1.4	1.4	1.7	1.7
Lead (Pb), µg/L	0.5	0.5	1.4	1.3	0.7	0.7
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	0.2	0.2
Zinc (Zn), μg/L	13.8	13.8	22.6	23.0	13.7	13.8

Remark: 1) \leq = less than

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

17 of 31

Results:

AC1-a	AC1-b	AC2-a	AC2-b	AC2-a	AC2-b
В	В	S	S	В	В
Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
17723-55	17723-159	17723-56	17723-160	17723-58	17723-162
5,3	5.3	3.4	3.5	3.5	3.5
3,900	3,800	3,900	3,800	3,100	3,100
<2	<2	<2	<2	<2	<2
0.49	0.49	0.57	0.57	0.60	0.60
0.007	0.007	0.006	0.007	0.009	0.009
1.3	1.3	1.1	1.1	1.2	1.2
0.131	0.127	0.103	0.100	0.100	0.103
7.65	7.78	5.06	5.09	5.04	4.87
1.80	1.75	1.28	1.25	1.16	1.18
2.23	2.30	1.47	1.50	1.35	1.30
0.3	0.3	0.2	0.2	0.3	0.3
1.2	1.2	1.9	1.8	1.1	1.1
6.7	6.5	6.1	6.2	5.6	5.6
0.3	0.3	<0.2	< 0.2	0.2	0.2
2.6	2.5	3.1	2.9	1.9	1.9
1.4	1.5	0.7	0.7	0.5	0.5
< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2
8.5	8.3	15.8	16.5	13.9	13.8
	B Mid-Flood 17723-55 5.3 3,900 <2 0.49 0.007 1.3 0.131 7.65 1.80 2.23 0.3 1.2 6.7 0.3 2.6 1.4 <0.2	B B Mid-Flood Mid-Flood 17723-55 17723-159 5.3 5.3 3,900 3,800 <2	B B S Mid-Flood Mid-Flood Mid-Flood 17723-55 17723-159 17723-56 5,3 5,3 3,4 3,900 3,800 3,900 <2	B B S S Mid-Flood Mid-Flood Mid-Flood Mid-Flood 17723-55 17723-159 17723-56 17723-160 5.3 5.3 3.4 3.5 3,900 3,800 3,900 3,800 <2	B B S S B Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood 17723-55 17723-159 17723-56 17723-160 17723-58 5.3 5.3 3.4 3.5 3.5 3,900 3,800 3,900 3,800 3,100 <2

Remark: $1) \le less than$

2) S = Surface, M = Middle, B = Bottom*************************

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

18 of 31

Doculte.

Results:						
Sample ID	AC3-a	AC3-b	AC3-a	AC3-b	AC4-a	AC4-b
Sampling Depth	S	S	В	В	S	S
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-59	17723-163	17723-61	17723-165	17723-62	17723-166
Suspended Solids (SS), mg/L	5.8	5.9	5.1	5.0	6.1	6.2
E. coli, cfu/100mL	2,600	2,700	2,400	2,300	2,300	2,300
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.84	0.84	0.97	0.96	0.73	0.70
Unionized Ammonia (UIA), mg/L	0.012	0.013	0.026	0.026	0.008	0.009
Total Kjeldahl Nitrogen (TKN), mg N/L	1.5	1.5	1.9	1.8	1.5	1.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.173	0.180	0.214	0.209	0.169	0.170
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.87	4.86	5.71	5.60	7.57	7.56
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.20	1.20	1.53	1.52	1.73	1.78
Total Phosphorous (TP), mg-P/L	1.45	1.50	1.83	1.80	2.21	2.30
Cadmium (Cd), µg/L	0.2	0.2	0.1	0.1	0.3	0.3
Chromium (Cr), µg/L	1.4	1.4	1.5	1.4	1.3	1.3
Copper (Cu), µg/L	5.4	5.1	6.2	6.0	6.7	6.7
Mercury (Hg), μg/L	0.3	0.3	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.1	2.1	2.3	2.2	2.7	2.5
Lead (Pb), μg/L	1.2	1.2	1.4	1.5	0.5	0.5
Silver (Ag), μg/L	< 0.2	<0.2	< 0.2	< 0.2	0.2	0.2
Zinc (Zn), μg/L	19.6	19.0	15.3	15. 8	19.2	20.4

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom*****************

TEST REPORT

 Laboratory No.:
 17723

 Date of Issue:
 2013-04-08

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

19 of 31

Results:

Results:						
Sample ID	AC4-a	AC4-b	AC5-a	AC5-b	AC5-a	AC5-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-64	17723-168	17723-65	17723-169	17723-66	17723-170
Suspended Solids (SS), mg/L	4.2	4.2	5.4	5.5	5.4	5.5
E. coli, cfu/100mL	2,300	2,300	18,000	18,000	16,000	16,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.71	0.71	1.53	1.52	1.44	1.41
Unionized Ammonia (UIA), mg/L	0.018	0.018	0.017	0.010	0.040	0.041
Total Kjeldahl Nitrogen (TKN), mg N/L	1.4	1.4	2.6	2.6	2.5	2.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.168	0.174	0.466	0.477	0.410	0.410
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	6.33	6.35	3.89	3.84	3.91	3.89
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.49	1.53	1.25	1.24	1.13	1.16
Total Phosphorous (TP), mg-P/L	2.03	2.00	1.35	1.30	1.43	1.44
Cadmium (Cd), μg/L	0.4	0.4	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	2.3	2.3	1.1	1.1	1.6	1.5
Copper (Cu), µg/L	6.7	6.7	7.7	7.7	7.6	7.6
Mercury (Hg), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.0	2.0	2.8	2.9	2.7	2.8
Lead (Pb), μg/L	1.0	1.0	0.6	0.6	1.5	1.4
Silver (Ag), μg/L	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.0	9.8	14.5	14.6	15.3	15.3

Remark: $1) \le 1$ less than

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

20 of 31

Results:		por				
Sample ID	AC5-a	AC5-b	AC6-a	AC6-b	AC6-a	AC6-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-67	17723-171	17723-68	17723-172	17723-69	17723-173
Suspended Solids (SS), mg/L	3.3	3,3	3.9	4.0	4.7	4.6
E. coli, cfu/100mL	13,000	13,000	15,000	15,000	16,000	16,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.38	1.37	1.00	1.00	1.09	1.11
Unionized Ammonia (UIA), mg/L	0.040	0.042	0.008	0.009	0.026	0.027
Total Kjeldahl Nitrogen (TKN), mg N/L	2.2	2.1	1.6	1.7	1.6	1.6
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.363	0.366	0.264	0.270	0.279	0.280
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.97	4.06	2.94	2.99	2.89	2.99
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.23	1.22	0.90	0.90	0.90	0.90
Total Phosphorous (TP), mg-P/L	1.49	1.50	0.96	1.00	1.01	1.00
Cadmium (Cd), μg/L	<0.1	<0.1	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	2.8	2.8	1.3	1.3	1.4	1.4
Copper (Cu), µg/L	7.8	8.2	6.9	6.8	6.8	6.8
Mercury (Hg), μg/L	0.2	0.2	0.3	0.3	0.3	0.2
Nickel (Ni), μg/L	2.7	2.6	1.9	1.9	1.9	1.9
Lead (Pb), μg/L	1.5	1.5	0.5	0.5	0.5	0.5
Silver (Ag), μg/L	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2
Zinc (Zn), μg/L	22.1	23.1	15.6	16.0	14.1	14.5

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

21 of 31

Posulte.

Results:						
Sample ID	AC6-a	AC6-b	AC7-a	AC7-b	AC7-a	AC7-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-70	17723-174	17723-71	17723-175	17723-72	17723-176
Suspended Solids (SS), mg/L	7.3	7.3	8.6	8.6	8.6	8.6
E. coli, cfu/100mL	18,000	18,000	5,200	5,100	2,900	2,900
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.29	1.24	1.31	1.31	1.56	1.58
Unionized Ammonia (UIA), mg/L	0.041	0.038	0.011	0.012	0.045	0.046
Total Kjeldahl Nitrogen (TKN), mg N/L	2.0	2.0	2.0	2.1	2.4	2.4
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.332	0.333	0.315	0.321	0.350	0.345
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	3.64	3.61	4.60	4.68	5.29	5.40
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	1.14	1.14	1.22	1.21	1.50	1.45
Total Phosphorous (TP), mg-P/L	1.37	1.40	1.49	1.50	1.92	1.90
Cadmium (Cd), μg/L	0.4	0.3	0.1	0.1	0.4	0.4
Chromium (Cr), μg/L	1.6	1.7	2.5	2.4	2.5	2.5
Copper (Cu), μg/L	6.9	6.9	5.3	5.4	5.6	5.6
Mercury (Hg), μg/L	0.2	0.2	0.3	0.3	0.2	0.2
Nickel (Ni), μg/L	1.7	1.8	1.8	1.8	2.4	2.3
Lead (Pb), μg/L	0.6	0.6	1.4	1.4	0.8	0.8
Silver (Ag), μg/L	< 0.2	< 0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	13.0	12.5	13.4	13.8	19.3	20.1

Remark: $1) \le 1$ less than

2) S = Surface, M = Middle, B = Bottom

Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

22 of 31

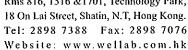
Doculter

Results:				***		
Sample ID	AC7-a	AC7-b	KT1-a	KT1-b	KT1-a	KT1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-73	17723-177	17723-74	17723-178	17723-75	17723-179
Suspended Solids (SS), mg/L	12.0	11.8	13.1	13.1	12.6	12.5
<i>E. coli</i> , cfu/100mL	6,000	6,000	290	290	420	420
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	1.62	1.65	0.89	0.86	0.68	0.66
Unionized Ammonia (UIA), mg/L	0.050	0.052	0.025	0.022	0.021	0.020
Total Kjeldahl Nitrogen (TKN), mg N/L	2.5	2.5	1.5	1.5	1.2	1.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.416	0.422	0.208	0.206	0.161	0.159
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	4.73	4.59	3.57	3.56	2.93	2.93
Ortho-phosphate (PO ₄), mg PO ₄ ³ ·-P/L	1.52	1.50	0.99	0.98	0.75	0.74
Total Phosphorous (TP), mg-P/L	1.89	1.90	1.08	1.10	0.77	0.80
Cadmium (Cd), μg/L	0.5	0.5	0.4	0.4	0.4	0.3
Chromium (Cr), µg/L	2.2	2.3	1.7	1.7	1.4	1.4
Copper (Cu), µg/L	5.1	5.1	5.3	5.3	6.2	5.8
Mercury (Hg), μg/L	<0.2	<0.2	0.3	0.3	0.2	0.2
Nickel (Ni), μg/L	2.5	2.5	2.8	2.6	1.1	1.1
Lead (Pb), μg/L	1.6	1.6	0.9	0.9	0.9	0.9
Silver (Ag), μg/L	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2
Zinc (Zn), μg/L	20.4	19.6	9.5	9.0	9.6	9.6

Remark: $1) \le 1$ less than

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT


Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

23 of 31 Page:

Doculte.

Results:						
Sample ID	KT1-a	KT1-b	IB1-a	Ш1-b	IB1-a	IB1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-76	17723-180	17723-77	17723-181	17723-78	17723-182
Suspended Solids (SS), mg/L	4.3	4.5	7.5	7.6	6.6	6.6
E. coli, cfu/100mL	520	540	2,400	2,400	2,500	2,400
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.39	0.40	0.20	0.20	0.20	0.20
Unionized Ammonia (UIA), mg/L	0.012	0.012	0.013	0.013	0.014	0.014
Total Kjeldahl Nitrogen (TKN), mg N/L	0.4	0.4	0.5	0.5	0.5	0.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.102	0.102	0.024	0.023	0.024	0.023
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	1.96	1.95	0.27	0.28	0.27	0.27
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.47	0.47	0.11	0.11	0.09	0.09
Total Phosphorous (TP), mg-P/L	0.52	0.50	0.17	0.20	0.12	0.10
Cadmium (Cd), μg/L	<0.1	<0.1	0.1	0.1	0.3	0.3
Chromium (Cr), µg/L	1.3	1.3	3.1	3.1	1.3	1.3
Copper (Cu), µg/L	5.9	5.8	7.9	7.4	5.7	5.6
Mercury (Hg), μg/L	< 0.2	<0.2	<0.2	< 0.2	0.2	0.2
Nickel (Ni), μg/L	2.9	2.9	1.1	1.1	2.3	2.5
Lead (Pb), μg/L	1.4	1.4	1.1	1.1	1.2	1.2
Silver (Ag), μg/L	0.2	0.2	<0.2	< 0.2	< 0.2	< 0.2
Zinc (Zn), μg/L	19.6	20.2	22.1	21.7	13.6	13.5

Remark: 1) \leq = less than

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

24 of 31

Doculter

Results:						
Sample ID	IB1-a	IB1-b	IB2-a	IB2-b	IB2-a	IB2-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-79	17723-183	17723-80	17723-184	17723-81	17723-185
Suspended Solids (SS), mg/L	8.3	8.4	9.6	9.5	5.2	5.2
E. coli, cfu/100mL	2,700	2,700	3,500	3,600	2,200	2,200
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.20	0.20	0.21	0.21	0.20	0.20
Unionized Ammonia (UIA), mg/L	0.015	0.0 15	0.014	0.014	0.016	0.016
Total Kjeldahl Nitrogen (TKN), mg N/L	0.5	0.5	0.5	0.5	0.5	0.5
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.023	0.023	0.024	0.024	0.023	0.023
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.27	0.28	0.27	0.27	0.27	0.28
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.09	0.09	0.09	0.10	0.10	0.10
Total Phosphorous (TP), mg-P/L	0.12	0.10	0.11	0.10	0.10	0.10
Cadmium (Cd), μg/L	0.1	0.1	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	1.4	1.3	3.0	2.9	2.6	2.4
Copper (Cu), μg/L	5.5	5.9	5.3	5.4	8.0	8.1
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	0.3	0.3
Nickel (Ni), μg/L	1.4	1.5	2.6	2.4	1.7	1.7
Lead (Pb), μg/L	1.0	1.0	0.5	0.6	0.9	0.9
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	18.1	17.1	19.4	19.4	17.5	17.6

Remark: $1) \le = less than$

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 2013-02-08 Date Received: Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

25 of 31

Paculte.

Results:			,,-			
Sample ID	IB2-a	IB2-b	IB3-a	IB3-b	IB3-a	IB3-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-82	17723-186	17723-83	17723-187	17723-84	17723-188
Suspended Solids (SS), mg/L	2.7	2.7	3.9	3.8	3.7	3.8
E. coli, cfu/100mL	2,500	2,600	46,000	45,000	41,000	42,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.22	0.21	0.37	0.37	0.37	0.37
Unionized Ammonia (UIA), mg/L	0.018	0.017	0.025	0.025	0.029	0.028
Total Kjeldahl Nitrogen (TKN), mg N/L	0.4	0.4	1.0	1.0	1.0	1.0
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.034	0.034	0.026	0.025	0.027	0.028
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.26	0.26	0.28	0.29	0.28	0.29
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.10	0.10	0.12	0.12	0.11	0.11
Total Phosphorous (TP), mg-P/L	0.12	0.10	0.19	0.20	0.13	0.12
Cadmium (Cd), µg/L	0.4	0.4	0.2	0.2	0.1	0.1
Chromium (Cr), µg/L	2.0	2.0	1.8	1.7	2.8	2.8
Copper (Cu), µg/L	6.1	6.2	7.6	7.9	7.5	7.2
Mercury (Hg), μg/L	<0.2	0.2	<0.2	< 0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.8	1.9	3.0	2.8	1.9	1.9
Lead (Pb), μg/L	1.0	1.0	1.6	1.5	0.6	0.6
Silver (Ag), μg/L	0.2	0.2	0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	11.8	12.2	13.5	14.0	15.6	14.5

Remark: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

26 of 31

Doculter

Results:						
Sample ID	IB3-a	IB3-b	OB1-a	OB1-b	OB1-a	OB1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-85	17723-189	17723-86	17723-190	17723-87	17723-191
Suspended Solids (SS), mg/L	8.7	8.7	14.3	14.2	6.1	6.0
E. coli, cfu/100mL	45,000	46,000	41,000	42,000	36,000	35,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.42	0.43	0.36	0.36	0.38	0.36
Unionized Ammonia (UIA), mg/L	0.037	0.038	0.023	0.023	0.024	0.026
Total Kjeldahl Nitrogen (TKN), mg N/L	1.1	1.1	1.0	1.0	1.0	1.0
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.028	0.028	0.026	0.027	0.034	0.033
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.30	0.30	0.28	0.28	0.28	0.28
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.10	0.10	0.15	0.16	0.12	0.12
Total Phosphorous (TP), mg-P/L	0.13	0.13	0.19	0.20	0.18	0.20
Cadmium (Cd), µg/L	0.2	0.3	0.5	0.4	0.1	0.1
Chromium (Cr), µg/L	2.4	2.4	2.5	2.6	3.0	2.9
Copper (Cu), μg/L	6.6	6.5	5.2	5.2	5.2	5.1
Mercury (Hg), μg/L	<0.2	<0.2	< 0.2	< 0.2	0.3	0.3
Nickel (Ni), μg/L	1.4	1.4	2.0	2.1	1.7	1.6
Lead (Pb), μg/L	0.7	0.7	0.9	0.9	0.5	0.5
Silver (Ag), μg/L	0.2	<0.2	< 0.2	< 0.2	<0.2	< 0.2
Zinc (Zn), μg/L	10.8	10.3	22.4	22.1	13.2	12.8

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

Laboratory No.: 17723 Date of Issue: 2013-04-08 Date Received: 2013-02-08 Date Tested: 2013-02-08 Date Completed: 2013-04-08

Page:

27 of 31

Results:						
Sample ID	OB1-a	OB1-b	VH1-a	VH1-b	VH1-a	VH1-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-88	17723-192	17723-89	17723-193	17723-90	17723-194
Suspended Solids (SS), mg/L	6.6	6.5	8.8	8.9	10.7	10.6
E. coli, cfu/100mL	48,000	47,000	2,000	1,900	2,000	2,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.37	0.37	0.09	0.09	0.09	0.09
Unionized Ammonia (UIA), mg/L	0.029	0.030	0.007	0.007	0.007	0.007
Total Kjeldahl Nitrogen (TKN), mg N/L	1.0	1.0	0.3	0.3	0.3	0.3
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.028	0.029	0.019	0.018	0.023	0.022
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.29	0.29	0.21	0.21	0.21	0.20
Ortho-phosphate (PO ₄), mg PO ₄ ³ -P/L	0.12	0.12	0.08	0.08	0.08	0.08
Total Phosphorous (TP), mg-P/L	0.13	0.14	0.10	0.10	0.09	0.10
Cadmium (Cd), μg/L	0.3	0.3	< 0.1	<0.1	0.1	0.1
Chromium (Cr), µg/L	3.0	2.9	1.4	1.4	1.8	1.8
Copper (Cu), μg/L	6.1	6.1	5.6	5.4	6.8	6.4
Mercury (Hg), μg/L	< 0.2	<0.2	0.2	0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.3	1.2	1.5	1.5	1,1	1.2
Lead (Pb), μg/L	0.9	0.9	1.0	1.0	1.0	1.0
Silver (Ag), μg/L	< 0.2	<0.2	0.2	0.2	<0.2	<0.2
Zinc (Zn), μg/L	20.2	20.7	12.5	12.1	10.0	9.8

Remark: 1) < = less than

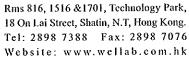
2) S = Surface, M = Middle, B = Bottom

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: 2013-04-08 Date of Issue: Date Received: 2013-02-08 Date Tested: 2013-02-08 2013-04-08 Date Completed:

Page:


28 of 31

Deculte.

Results:		 				
Sample ID	VH1-a	VH1-b	VH2-a	VH2-b	VH2-a	VH2-b
Sampling Depth	В	В	S	S	M	M
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-91	17723-195	17723-92	17723-196	17723-93	17723-197
Suspended Solids (SS), mg/L	5.5	5.4	10.9	10.8	6.9	6.8
E. coli, cfu/100mL	2,000	1,900	720	720	800	820
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.10	0.10	0.07	0.07	0.07	0.06
Unionized Ammonia (UIA), mg/L	0.008	0.008	0.006	0.006	0.006	0.005
Total Kjeldahl Nitrogen (TKN), mg N/L	0.2	0.2	0.4	0.4	0.2	0.2
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.020	0.020	0.017	0.017	0.016	0.016
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.21	0.21	0.15	0.14	0.15	0.14
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.08	0.08	0.05	0.06	0.06	0.06
Total Phosphorous (TP), mg-P/L	0.09	0.10	0.09	0.10	0.10	0.10
Cadmium (Cd), μg/L	0.2	0.2	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	2.0	1.9	2.0	1.9	2.0	2.0
Copper (Cu), µg/L	6.6	6.6	6.9	7.0	5.3	5.4
Mercury (Hg), μg/L	0.2	0.2	0.2	0.2	0.2	0.2
Nickel (Ni), μg/L	2.9	3.0	1.8	1.8	2.0	1.9
Lead (Pb), μg/L	1.1	1.1	0.7	0.7	0.7	0.7
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	22.7	22.1	17.6	17.3	21.1	19.8

Remark: 1) \leq = less than

2) S = Surface, M = Middle, B = Bottom

TEST REPORT

17723 Laboratory No.: Date of Issue: 2013-04-08 Date Received: 2013-02-08 2013-02-08 Date Tested: Date Completed: 2013-04-08

Page:

29 of 31

Results:						
Sample ID	VH2-a	VH2-b	KTN-a	KTN-b	KTN-a	KTN-b
Sampling Depth	В	В	S	S	В	В
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-94	17723-198	17723-95	17723-199	17723-97	17723-201
Suspended Solids (SS), mg/L	16.6	16.5	7.3	7.4	7.4	7.3
E. coli, cfu/100mL	580	570	28,000	28,000	29,000	29,000
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.07	0.07	0.36	0.35	0.37	0.37
Unionized Ammonia (UIA), mg/L	0.006	0.006	0.004	0.003	0.004	0.004
Total Kjeldahl Nitrogen (TKN), mg N/L	0.5	0.5	1.1	1.1	1.1	1.1
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.017	0.017	0.100	0.100	0.104	0.104
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	0.16	0.16	5.43	5.36	5.53	5.30
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	0.06	0.06	1.61	1.51	1.65	1.61
Total Phosphorous (TP), mg-P/L	0.12	0.10	2.25	2.16	2.21	2.20
Cadmium (Cd), μg/L	0.2	0.2	0.3	0.3	0.3	0.3
Chromium (Cr), µg/L	1.0	1.1	1.6	1.5	1.7	1.7
Copper (Cu), µg/L	5.0	4.8	6.3	6.4	6.2	5.9
Mercury (Hg), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	2.1	2.1	2.0	2.0	2.1	2.1
Lead (Pb), μg/L	0.6	0.6	0.8	0.9	0.8	0.9
Silver (Ag), μg/L	<0.2	<0.2	0.2	0.2	0.2	0.2
Zinc (Zn), μg/L	13.2	12.9	17.1	17.4	18.7	18.6

Remark: $1) \le = less than$

2) S = Surface, M = Middle, B = Bottom

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: Date of Issue: 2013-04-08 Date Received: 2013-02-08 2013-02-08 Date Tested: 2013-04-08 Date Completed:

30 of 31 Page:

Reculte.

Results:						· · · · · · · · · · · · · · · · · · ·
Sample ID	JVC-a	ЈУС-ь	JVC-а	JVC-b	WSD Intake at Tai Wan-a	WSD Intake at Tai Wan-b
Sampling Depth	S	S	В	В	N/A	N/A
Tide	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood
Sample Number	17723-98	17723-202	17723-100	17723-204	17723-101	17723-205
Suspended Solids (SS), mg/L	10.0	9.8	4.6	4.6	2.7	2.6
E. coli, cfu/100mL	6,800	7,000	8,400	8,300	2,300	2,400
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	<2	<2	<2	<2	<2	<2
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	0.92	0.91	0.85	0.85	0.09	0.09
Unionized Ammonia (UIA), mg/L	0.010	0.008	0.021	0.021	0.008	0.008
Total Kjeldahl Nitrogen (TKN), mg N/L	1.7	1.8	1.6	1.6	0.3	0.3
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	0.197	0.194	0.179	0.174	0.019	0.019
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	6.14	6.08	5.29	5.36	0.21	0.21
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	1.63	1.61	1.35	1.40	0.15	0.15
Total Phosphorous (TP), mg-P/L	1.95	1.90	1.52	1.60	0.18	0.20
Cadmium (Cd), µg/L	0.4	0.4	0.1	0.1	0.3	0.3
Chromium (Cr), μg/L	1.4	1.3	2.4	2.5	2.3	2.3
Copper (Cu), μg/L	7.6	7.5	5.3	5.1	5.6	5.6
Mercury (Hg), μg/L	<0.2	<0.2	0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	1.5	1.5	2.2	2.2	1.2	1.2
Lead (Pb), μg/L	1.6	1.6	1.6	1.6	1.5	1.5
Silver (Ag), μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2
Zinc (Zn), μg/L	10.1	10.2	22.5	22.3	21.6	21.1

Remark: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

17723 Laboratory No.: Date of Issue: 2013-04-08 2013-02-08 Date Received: 2013-02-08 Date Tested: 2013-04-08 Date Completed:

Page:

31 of 31

Regulte.

WSD	WSD	WSD			WSD
Intake at	Intake at	Intake at	i		Intake at
Cha Kwo		` .	~ •		Sai Wan
					Ho-b
N/A	N/A				N/A
Mid-Flood	Mid-Flood	Mid-Flood	Mid-Flood		Mid-Flood
17723-102	17723-206	17723-103	17723-207		17723-208
4.9	5.0	15.4	15.3		7.8
1,500	1,500	820	860	580	590
<2	<2	<2	<2	<2	<2
0.10	0 .11	0.07	0.07	0.07	0.07
0.004	0.004	0.006	0.006	0.006	0.006
0.4	0.4	0.5	0.5	0.4	0.4
0.028	0.028	0.023	0.023	0.018	0.018
0.38	0.36	0.14	0.15	0.15	0.15
0.11	0.11	0.06	0.06	0.07	0.07
0.13	0.13	0.10	0.10	0.09	0.10
0.4	0.4	0.1	0.1	0.3	0.3
2.9	2.7	2.6	2.6	1.6	1.5
5.4	5.5	6.1	5.8	6.8	6.9
0.2	0.2	0.2	0.2	0.3	0.3
2.1	2.1	2.4	2.4	1.9	1.9
1.6	1.6	1.3	1.4	1.1	1.1
0.2	0.2	<0.2	<0.2	<0.2	<0.2
22.2	22.3	19.4	19.4	8.1	8.0
	Intake at Cha Kwo Ling-a N/A Mid-Flood 17723-102 4.9 1,500 <2 0.10 0.004 0.4 0.428 0.38 0.11 0.13 0.4 2.9 5.4 0.2 2.1 1.6 0.2	Intake at Cha Kwo Ling-a Intake at Cha Kwo Ling-b N/A N/A Mid-Flood Mid-Flood 17723-102 17723-206 4.9 5.0 1,500 1,500 <2	Intake at Cha Kwo Ling-a Intake at Cha Kwo Ling-b Intake at Quarry Bay-a N/A N/A N/A Mid-Flood Mid-Flood Mid-Flood 17723-102 17723-206 17723-103 4.9 5.0 15.4 1,500 1,500 820 <2	Intake at Cha Kwo Ling-a Intake at Cha Kwo Ling-b Intake at Quarry Bay-b Intake at Quarry Bay-b Intake at Quarry Bay-b N/A N/A N/A N/A N/A Mid-Flood Mid-Flood Mid-Flood Mid-Flood 17723-102 17723-206 17723-103 17723-207 4.9 5.0 15.4 15.3 1,500 1,500 820 860 <2	Intake at Cha Kwo Ling-a Intake at Cha Kwo Ling-b Intake at Cha Kwo Ling-b Intake at Quarry Bay-b Intake at Quarry Bay-b Intake at Sai Wan Ho-a N/A N/A N/A N/A N/A N/A Mid-Flood Mid-Flood Mid-Flood Mid-Flood Mid-Flood 17723-102 17723-206 17723-103 17723-207 17723-104 4.9 5.0 15.4 15.3 8.0 1,500 1,500 820 860 580 <2

Remark: 1) < = less than

2) S = Surface, M = Middle, B = Bottom

APPENDIX C2 LABORATORY TESTING REPORT FOR ODOUR SAMPLING

For Cinotech Consultant Limited

Odour Sampling and Olfactometry Measurement for Kai Tak Development

12rd March 2013

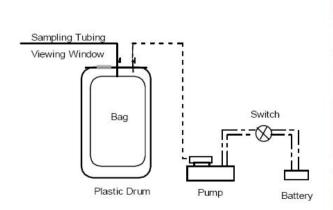
By Odour Research Laboratory
Department of Civil & Environmental Engineering
The Hong Kong Polytechnic University

On behalf of PolyU Technology & Consultancy Co. Ltd.

1. Background

A service to collect odour samples within the boundary of Kai Tak Approach Channel (KTAC) and Kwun Tong Typhoon Shelter (KTTS) at Kai Tak and then to conduct olfactomerty measurement at PolyU to determine odour concentration was required by Cinotech Consultant Limited.

2. Scope of the Work

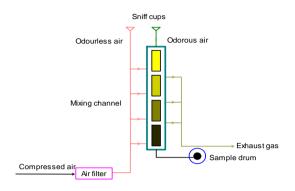

The scope of the work includes:

- to collect a blank sample for quality control
- to collect a total of 13 odour samples from 13 sampling locations identified by the client and to deliver the collected odour samples to the Odour Laboratory of PolyU for analysis;
- to analyze determine the dour concentration of 13 odour samples by olfactometry measurement at the Odour Laboratory of PolyU;
- to prepare a report.

3. Methodology

3.1. Odour Sampling

Odour gaseous sample is collected by using an odour sampling system, which includes a battery-operated air pump, a sampling vessel, and an odour bag as shown below. During air sampling, an empty sample bag is placed in the vessel, a rigid plastic container, and the container is then evacuated at a controlled rate and the bag is filled with foul gas. About 60 L of foul gas is collected for each sample.



3.2 Odour Measurement by Olfactometry

Odour concentration is determined by a Forced-choice Dynamic Olfactometer (Olfactomat-n2) in accordance with the European Standard Method (EN13725).

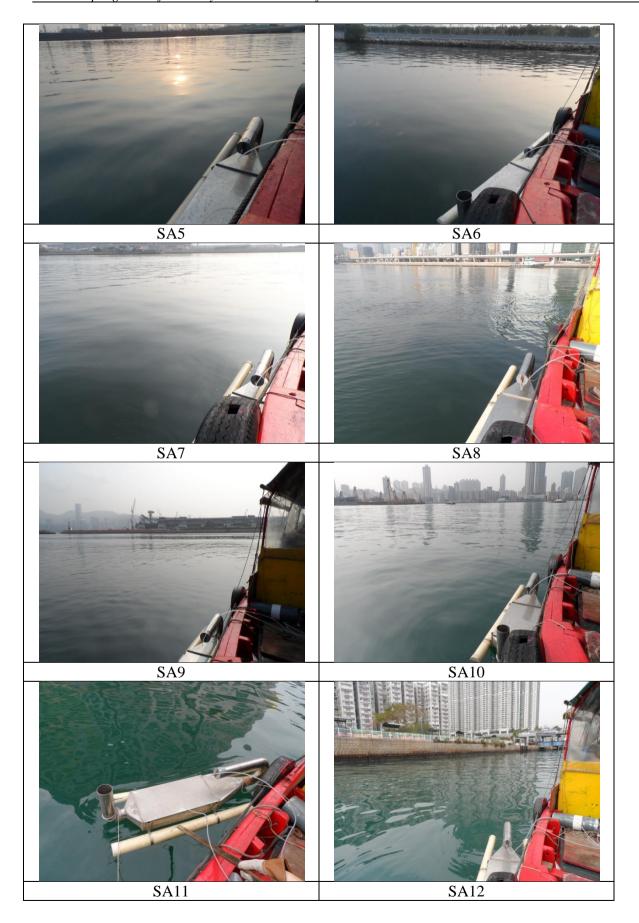
A force-choice olfactometer

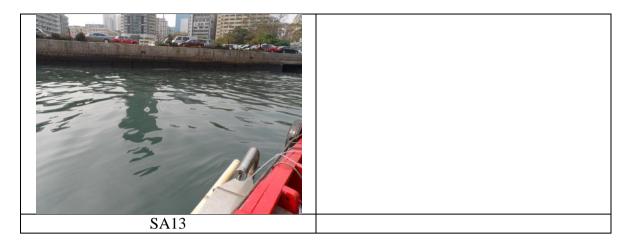
Olfactometer in PolyU (Olfactomate-n2)

This European Standard specifies a method for the objective determinations of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors. This European Sandard is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor. The unit of measurement is the odour unit per cubic metre: ou/m³. The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is be definition 1 ou/m³. The odour concentration is then expressed in terms of multiples of the detection threshold. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from 10¹ ou/m³ to 10² ou/m³.

4. On-site Sampling


4.1 Thirteen sampling locations with relevant sampling methods are summarized in Table 1 and also clearly marked in figure 1.


Table 1: Monitoring locations at the boundary of KTAC and KTTS


Location ID	Location description	Sampling method
SA1	Northern KTAC, in the vicinity of Kai Tak Nullah (KTN)	Sampling at seawater surface
SA2	Northern KTAC	Sampling at seawater surface
SA3	Northern KTAC, in the vicinity of Jordan Valley Culvert (JVC) Outfall	Sampling at seawater surface
SA4	Southern KTAC	Sampling at seawater surface
SA5	Southern KTAC	Sampling at seawater surface
SA6	Southern KTAC	Sampling at seawater surface
SA7	KTTS	Sampling at seawater surface
SA8	KTTS	Sampling at seawater surface
SA9	KTTS	Sampling at seawater surface

SA10	Kowloon Bay (between runway opening and TKWTS)	Sampling at seawater surface
SA11	MTK waterfront, at the end of Ma Tau Kok Road	Sampling at seawater surface
SA12	TKW waterfront, near Vehicle Examination Centre	Sampling at seawater surface
SA13	Hoi Sham Park waterfront	Sampling at seawater surface

- 4.2 The odour sampling works were conducted on 27th February 2013. While one odour samples at each location were collected at location SA1, SA2, SA3, SA4, SA5, SA6, SA7, SA8, SA9, SA10, SA11, SA12 and SA13. A total of 13 odour samples were collected on the site and delivered to the Odour Laboratory of PolyU immediately.
- 4.3 During the odour sampling, relevant weather conditions including ambient temperature, relative humidity, wind speed, and wind direction were recorded on the sites for references.
- 4.4 Some photos about the on-site sampling activities at the 13 locations are presented below.

5. Laboratory Analysis

- 5.1 A total of 13 odour samples were transported to the Odour Laboratory of PolyU immediately after the sampling for olfactometry analysis using a forced-choice dynamic olfactometer within hours in accordance with the European Standard Method (EN 13725). Five qualified panelists participated in the odour testing session, which were previously selected through a screening testing by using a 48ppm of certified n-butanol gas as a standard reference.
- 5.2 From the odour concentrations determined by olfactometry, the specific emission rates ((SOER) at 13 locations were calculated by the following equation and the final results are shown in Table 2:

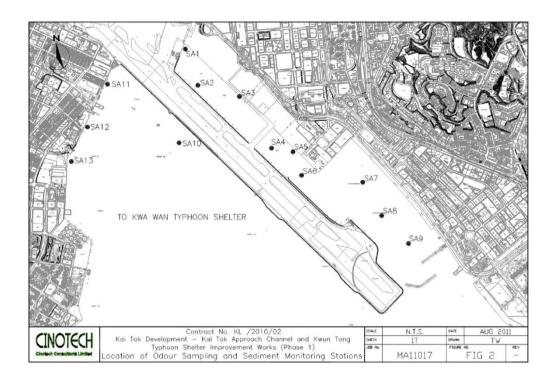
results are shown in Table 2:

$$SOER(ou/m^2/s) = \frac{Odour concentration(ou/m^3) \times Air flow rate inside hood(m^3/s)}{Covered surface area(m^2)}$$

Where air flow rate inside hood = $0.01 \,\text{m/s}$ (flow velocity) $\times 0.4 \,\text{m(W)} \times 0.1 \,\text{m(H)} = 0.0004 \,\text{m}^3/\text{s}$, and covered surface area = $0.8 \,\text{m(L)} \times 0.4 \,\text{m(W)} = 0.32 \,\text{m}^2$

6. Analytical Results

The results of odour concentrations are summarized in Table 2:


Table 2: Summary of analytical results

Location ID	Date	Time	AT (C)	RH (%)	WD	WS (m/s)	OC (ou/m³)	SOER (ou/m²/s)
SA1	27/02/2013	16:52	28.7	64.4	S	3.2	36	0.05
SA2	27/02/2013	17:02	28.6	61.8	SE	2.5	23	0.03
SA3	27/02/2013	17:13	27.4	68.4	SE	2.6	142	0.18
SA4	27/02/2013	17:24	27.1	67.3	SE	2.7	<10	< 0.01
SA5	27/02/2013	17:36	26.9	68.4	SE	1.1	33	0.04
SA6	27/02/2013	17:45	26.8	69.0	SE	1.0	19	0.02
SA7	27/02/2013	16:07	29.9	60.7	SE	1.9	<10	< 0.01
SA8	27/02/2013	15:56	29.2	63.2	SE	2.1	<10	< 0.01
SA9	27/02/2013	15:21	28.1	65.5	SE	2.8	<10	< 0.01
SA10	27/02/2013	14:53	26.5	64.3	SE	1.8	<10	< 0.01
SA11	27/02/2013	14:06	23.9	74.6	W	1.5	25	0.03
SA12	27/02/2013	14:21	24.9	74.5	W	0.1	<10	< 0.01
SA13	27/02/2013	14:34	27.7	66.8	Е	2.4	463	0.58

Remark: Time: Sampling time; At: Air temperature; RH: Relative humidity; WD Wind direction; WS: Wind speed; OC: odour concentration; SOER: Specific odour emission rate

Prepared by: Professor S. C. LEE Signed:

Figure 1: Thirteen locations of odour sampling at the boundary of KTAC & KTTS

APPENDIX C3 LABORATORY TESTING REPORT FOR SEDIMENT MONITORING

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

17854-V1 Laboratory No.: Date of Issue: 2013-05-03

Date Received: 2013-02-28

Date Tested: 2013-02-28 Date Completed: 2013-03-07

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Sample Description: 13 samples as received by customer said to be vibrocore

Project No.

: MA11017

Project Name: Contract No. KL/2010/02

Kai Tak Development - Kai Tak Approach Channel

& Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Custody No. : MA11017/130228

Sampling Date: 2013-02-28

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Acid volatile sulphide	EPA 821/R-91-100	2 mg/kg
2	Redox	Instrumental, pH/Redox Meter	1 mV
3	pH	(electrodemetric)	pH 2.0 – 12.0
4	Residual Nitrate	In-house Method SOP056 (FIA)	0.05 mg NO_3 -N/L ³

Remark: This report supersedes the one dated 2013-03-07 with certificate number 17854

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 17854-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-28

 Date Tested:
 2013-02-28

 Date Completed:
 2013-03-07

Page:

2 of 2

Results:

a 1 10		Acid volatile sulphide	Redox	pН	Residual Nitrate
Sample ID	Sample Number	(mg/kg) ²	(mV)	(pH unit)	$(mg NO_3^N/L)^3$
SA1	17854-1	350	-250	7.2	0.24
SA2	17854-2	1700	-280	7.5	0.43
SA3	17854-3	1900	-280	7.4	0.33
SA4	17854-4	1000	-190	7.6	270
SA5	17854-5	1300	-110	8.1	2.4
SA6	17854-6	1500	-560	8.0	0.35
SA7	17854-7	2000	-320	7.9	0.11
SA8	17854-8	780	-230	8.1	3.2
SA9	17854-9	67	-330	8.1	< 0.05
SA10	17854-10	130	-310	8.2	0.07
SA11	17854-11	67	-310	7.9	< 0.05
SA12	17854-12	380	-270	7.9	< 0.05
SA13	17854-13	370	-380	8.0	1.9

Remarks: $1) \le less than$

- 2) Results reported as dry weight basis
- 3) Results reported in terms of L of wet sediment

APPENDIX D1 QUALITY CONTROL REPORT FOR WATER QUALITY MONITORING

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: QC17723-V1 Date of Issue: 2013-05-03

Date Received: 2013-02-08
Date Tested: 2013-02-08

Date Completed: 2013-04-08

ATTN:

Miss Mei Ling Tang

Page:

1 of 8

QC report: Method Blank

Method Blank						
Parameter	Method Blank 1	Method Blank 2	Method Blank 3	Method Blank 4	Method Blank 5	Acceptance
Suspended Solids (SS), mg/L	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
E. coli, cfu/100mL	<1	<1	<1	<1	<1	<1
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	N/A	N/A	N/A	N/A	N/A	N/A
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Unionized Ammonia (UIA), mg/L	N/A	N/A	N/A	N/A	N/A	N/A
Total Kjeldahl Nitrogen (TKN), mg N/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Nitrite-nitrogen (NO2-N), mg NO2-N/L	< 0.002	< 0.002	<0.002	< 0.002	< 0.002	< 0.002
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Total Phosphorous (TP), mg-P/L	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Cadmium (Cd), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Copper (Cu), µg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Mercury (Hg), μg/L	<0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), μg/L	<0.4	<0.4	<0.4	< 0.4	<0.4	< 0.4

Remark: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Låboratory Ma**n**ager

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

2 of 8

QC report: Method Blank

Parameter	Method Blank 6	Method Blank 7	Method Blank 8	Method Blank 9	Acceptance
Suspended Solids (SS), mg/L	< 0.5	<0.5	< 0.5	<0.5	<0.5
E. coli, cfu/100mL	<1	<1	<1	<1	<1
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	N/A	N/A	N/A	N/A	N/A
Ammonia Nitrogen (NH ₃ -N), mg NH ₃ -N/L	<0.01	<0.01	<0.01	<0.01	<0.01
Unionized Ammonia (UIA), mg/L	N/A	N/A	N/A	N/A	N/A
Total Kjeldahl Nitrogen (TKN), mg N/L	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrite-nitrogen (NO ₂ -N), mg NO ₂ -N/L	<0.002	< 0.002	< 0.002	<0.002	<0.002
Nitrate-nitrogen (NO ₃ -N), mg NO ₃ -N/L	<0.01	<0.01	< 0.01	<0.01	< 0.01
Ortho-phosphate (PO ₄), mg PO ₄ ³⁻ -P/L	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Total Phosphorous (TP), mg-P/L	< 0.01	< 0.01	<0.01	<0.01	<0.01
Cadmium (Cd), µg/L	<0.1	< 0.1	<0.1	< 0.1	<0.1
Chromium (Cr), μg/L	<0.2	<0.2	<0.2	< 0.2	< 0.2
Copper (Cu), μg/L	<0.2	< 0.2	< 0.2	<0.2	<0.2
Mercury (Hg), μg/L	<0.2	< 0.2	<0.2	<0.2	<0.2
Nickel (Ni), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Lead (Pb), μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Silver (Ag), μg/L	<0.2	<0.2	<0.2	<0.2	< 0.2
Zinc (Zn), μg/L	<0.4	< 0.4	<0.4	<0.4	< 0.4

Remark: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

3 of 8

QC report: Method OC

Method QC			1		r	
Parameter	MQC1	MQC2	MQC3	MQC4	MQC5	Acceptance
Suspended Solids (SS), %	96	99	96	99	94	80-120
E. coli	N/A	N/A	N/A	N/A	N/A	N/A
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	195	194	201	187	192	170-220
Ammonia Nitrogen (NH ₃ -N), %	93	96	91	98	98	80-120
Unionized Ammonia (UIA)	98	95	94	90	91	N/A
Total Kjeldahl Nitrogen (TKN), %	100	93	99	96	95	80-120
Nitrite-nitrogen (NO ₂ -N), %	96	100	95	97	89	80-120
Nitrate-nitrogen (NO ₃ -N), %	89	99	94	93	97	80-120
Ortho-phosphate (PO ₄), %	89	92	96	98	95	80-120
Total Phosphorous (TP), %	99	90	97	97	94	80-120
Cadmium (Cd), %	98	93	94	94	95	80-120
Chromium (Cr), %	98	95	95	88	91	80-120
Copper (Cu), %	96	98	94	88	99	80-120
Mercury (Hg), %	91	95	91	93	93	80-120
Nickel (Ni), %	95	93	96	99	94	80-120
Lead (Pb), %	91	101	93	89	97	80-120
Silver (Ag), %	96	94	94	91	94	80-120
Zinc (Zn), %	100	98	91	93	96	80-120

Remark: $1) \le 1$ less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

4 of 8

QC report: Method QC

Method QC Parameter	MQC 6	MQC 7	MQC 8	MQC 9	Acceptance
Suspended Solids (SS), %	94	97	95	92	80-120
E. coli	N/A	N/A	N/A	N/A	N/A
5-day Biochemical Oxygen Demand (BOD ₅), mg-O ₂ /L	196	198	193	197	170-220
Ammonia Nitrogen (NH ₃ -N), %	90	93	97	94	80-120
Unionized Ammonia (UIA)	95	96	94	95	N/A
Total Kjeldahl Nitrogen (TKN), %	93	96	101	96	80-120
Nitrite-nitrogen (NO ₂ -N), %	93	99	96	99	80-120
Nitrate-nitrogen (NO ₃ -N), %	97	91	96	92	80-120
Ortho-phosphate (PO ₄), %	92	97	97	90	80-120
Total Phosphorous (TP), %	97	98	95	89	80-120
Cadmium (Cd), %	95	100	95	95	80-120
Chromium (Cr), %	99	90	89	97	80-120
Copper (Cu), %	99	89	93	94	80-120
Mercury (Hg), %	97	96	96	98	80-120
Nickel (Ni), %	100	97	97	92	80-120
Lead (Pb), %	100	95	95	97	80-120
Silver (Ag), %	93	96	96	99	80-120
Zinc (Zn), %	101	91	96	96	80-120

Remark: $1) \le 1$ less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

5 of 8.

QC report: Sample Spike

Sample Spike						
Parameter	17723-25 spk	17723-48 spk	17723-72 spk	17723-92 spk	17723-119 spk	Acceptance
Suspended Solids (SS)	N/A	N/A	N/A	N/A	N/A	N/A
E. coli	N/A	N/A	N/A	N/A	N/A	N/A
5-day Biochemical Oxygen Demand (BOD ₅)	N/A	N/A	N/A	N/A	N/A	N/A
Ammonia Nitrogen (NH ₃ -N), %	93	102	96	96	91	80-120
Unionized Ammonia (UIA)	N/A	N/A	N/A	N/A	N/A	N/A
Total Kjeldahl Nitrogen (TKN), %	91	91	91	98	90	80-120
Nitrite-nitrogen (NO ₂ -N), %	99	96	94	89	88	80-120
Nitrate-nitrogen (NO ₃ -N), %	89	97	87	93	88	80-120
Ortho-phosphate (PO ₄), %	92	94	88	98	96	80-120
Total Phosphorous (TP), %	93	85	94	100	93	80-120
Cadmium (Cd), %	94	93	100	93	94	80-120
Chromium (Cr), %	88	92	94	95	92	80-120
Copper (Cu), %	98	98	89	98	100	80-120
Mercury (Hg), %	94	86	94	95	96	80-120
Nickel (Ni), %	92	97	90	88	96	80-120
Lead (Pb), %	99	95	85	96	91	80-120
Silver (Ag), %	91	89	94	99	87	80-120
Zinc (Zn), %	92	87	98	97	93	80-120

Remark: $1) \le 1$ less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

rate Compr

Page:

6 of 8

QC report:

Sample Spike					
Parameter	17723-139	17723-165	17723-186	17723-208	Acceptance
	spk	spk	spk	spk	•
Suspended Solids (SS)	N/A	N/A	N/A	N/A	N/A
E. coli	N/A	N/A	N/A	N/A	N/A
5-day Biochemical Oxygen Demand (BOD ₅)	N/A	N/A	N/A	N/A	N/A
Ammonia Nitrogen (NH ₃ -N), %	93	101	97	92	80-120
Unionized Ammonia (UIA)	N/A	N/A	N/A	N/A	N/A
Total Kjeldahl Nitrogen (TKN), %	93	93	93	91	80-120
Nitrite-nitrogen (NO ₂ -N), %	90	90	97	96	80-120
Nitrate-nitrogen (NO ₃ -N), %	90	92	94	92	80-120
Ortho-phosphate (PO4), %	90	90	91	91	80-120
Total Phosphorous (TP), %	94	96	94	99	80-120
Cadmium (Cd), %	91	92	94	97	80-120
Chromium (Cr), %	91	93	97	92	80-120
Copper (Cu), %	94	90	94	84	80-120
Mercury (Hg), %	90	97	97	100	80-120
Nickel (Ni), %	98	93	96	100	80-120
Lead (Pb), %	97	93	92	91	80-120
Silver (Ag), %	96	94	95	87	80-120
Zinc (Zn), %	98	88	88	99	80-120

Remark: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Laboratory No.:
 QC17723-V1

 Date of Issue:
 2013-05-03

 Date Received:
 2013-02-08

 Date Tested:
 2013-02-08

 Date Completed:
 2013-04-08

Page:

7 of 8

QC report:

Sample Duplicate

Sample Duplicate						r
Parameter	17723-25 chk	17723-48 chk	17723-72 chk	17723-92 chk	17723-119 chk	Acceptance
Suspended Solids (SS)	5	4	4	4	4	RPD≤20
E. coli	N/A	N/A	N/A	N/A	N/A	N/A
5-day Biochemical Oxygen Demand (BOD ₅)	N/A	N/A	N/A	N/A	N/A	RPD≤20
Ammonia Nitrogen (NH ₃ -N), %	5	6	5	5	4	RPD≤20
Unionized Ammonia (UIA)	N/A	N/A	N/A	N/A	N/A	N/A
Total Kjeldahl Nitrogen (TKN), %	3	3	7	4	6	RPD≤20
Nitrite-nitrogen (NO ₂ -N), %	6	3	5	4	5	RPD≤20
Nitrate-nitrogen (NO ₃ -N), %	6	3	5	6	6	RPD≤20
Ortho-phosphate (PO ₄), %	4	4	5	4	4	RPD≤20
Total Phosphorous (TP), %	3	6	4	5	6	RPD≤20
Cadmium (Cd), %	5	4	5	4	5	RPD≤20
Chromium (Cr), %	4	3	7	4	3	RPD≤20
Copper (Cu), %	7	3	4	5	3	RPD≤20
Mercury (Hg), %	N/A	6	5	4	5	RPD≤20
Nickel (Ni), %	3	5	5	4	3	RPD≤20
Lead (Pb), %	5	3	5	3	4	RPD≤20
Silver (Ag), %	N/A	4	N/A	N/A	N/A	RPD≤20
Zinc (Zn), %	5	4	4	4	5	RPD≤20

Remark: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Laboratory No.:

QC17723-V1

Date of Issue:
Date Received:

2013-05-03 2013-02-08

Date Tested:

2013-02-08

Date Completed:

2013-02-08

Page:

8 of 8

QC report:

Sample Duplicate

17723-139 chk	17723-165 chk	17723-186 chk	17723-208 chk	Acceptance
4	3	4	3	RPD<20
N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	RPD≤20
5	6	4	4	RPD≤20
N/A	N/A	N/A	N/A	N/A
4	5	7	3	RPD≤20
7	5	3	3	RPD≤20
5	3	3	6	RPD≤20
4	6	6	3	RPD≤20
6	5	4	5	RPD≤20
4	3	7	5	RPD≤20
4	4	4	4	RPD≤20
5	4	4	3	RPD≤20
N/A	4	5	4	RPD≤20
3	5	7	4	RPD≤20
6	4	6	5	RPD≤20
3	N/A	4	N/A	RPD≤20
5	4	6	4	RPD≤20
	chk 4 N/A N/A N/A 5 N/A 4 7 5 4 6 4 5 N/A 3 6 3	chk chk 4 3 N/A N/A N/A N/A 5 6 N/A N/A 4 5 7 5 5 3 4 6 6 5 4 3 4 4 5 4 N/A 4 3 5 6 4 3 N/A	chk chk chk 4 3 4 N/A N/A N/A N/A N/A N/A 5 6 4 N/A N/A N/A 4 5 7 7 5 3 5 3 3 4 6 6 6 5 4 4 4 4 5 4 4 5 4 4 5 4 4 N/A 4 5 3 5 7 6 4 6 3 N/A 4	chk chk chk 4 3 4 3 N/A N/A N/A N/A N/A N/A N/A N/A

Remark: $1) \le = less than$

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 17723
- 4) This report supersedes the one dated 2013-04-08 with certificate number QC17723

APPENDIX D2 QUALITY CONTROL REPORT FOR SEDIMENT MONITORING

Rms 816, 1516 &1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Laboratory No.: QC17854 Date of Issue: 2013-03-0

Date of Issue: 2013-03-07 Date Received: 2013-02-28

Date Tested: 2013-02-28

Date Completed: 2013-03-07

ATTN:

Miss Mei Ling Tang

Page:

1 of 1

QC report: Method Blank

Parameter	Method Blank 1	Method Blank 2	Acceptance
Acid volatile sulphide, mg/L	< 0.016	< 0.016	< 0.016
Redox, mV	N/A	N/A	N/A
pH, pH unit	N/A	N/A	N/A
Residual Nitrate, mg NO ₃ -N/L	<0.01	< 0.01	< 0.01

Method OC

Parameter	MQC I	MQC 2	Acceptance
Acid volatile sulphide, %	96	98	80-120
Redox, %	N/A	N/A	N/A
рН, %	N/A	N/A	N/A
Residual Nitrate, %	101	93	80-120

Sample Spike

Parameter	17854-10 spk	17854-13 spk	Acceptance
Acid volatile sulphide, %	92	96	80-120
Redox, %	N/A	N/A	N/A
pH, %	N/A	N/A	N/A
Residual Nitrate, %	95	96	80-120

Sample Duplicate

Parameter	17854-10 chk	17854-13 chk	Acceptance
Acid volatile sulphide, %	6	7	RPD ≤20
Redox, %	N/A	N/A	N/A
pH, %	N/A	N/A	N/A
Residual Nitrate, %	7	3	RPD ≤20

Remarks: $1) \le =$ less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 17854

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX E1
IN-SITU MEASUREMENT RESULTS
FOR MARINE WATER QUALITY
MONITORING

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC1 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
0.5	Cloudy	Moderate	12:03	22.9	7.2	14.2	88.7	6.8	3.7
0.0	Oldddy	Modelate	12:07	22.3	7.2	16.8	85.2	6.5	3.4
1,0	Cloudy	Moderate	12:03	23.0	7.2	12.9	79.4	6.0	3.2
1,0	Cloudy	Moderate	12:07	22.0	7.2	14.1	82.2	6.3	3.1
1.5	Cloudy	Moderate	12:03	20.9	7.6	18.9	74.4	5.7	2.2
1.0	Cloudy	Moderate	12:08	21.7	7.5	16.5	74.1	5.6	2.3
2.0	Cloudy	Moderate	12:04	20.4	7.6	20.7	77.4	5.9	2.1
2.0	Cloddy		12:08	20.8	7.6	21.1	75.8	5.8	2.1
2,5	Cloudy	Moderate	12:04	19.0	7.7	30.2	67.9	5.2	0.9
2.0	Oicudy	Woderale	12:08	19.1	7.8	28.0	60.7	4.6	1.1
3.0	Cloudy	Moderate	12:04	18.9	7,6	30.7	64.7	4.9	2.2
0.0	Oloudy	Moderate	12:09	19.0	7.7	30.4	65.2	5.0	2.4
3.5	Cloudy	Moderate	12:05	18.6	7.6	30.8	44.7	3.4	2.4
0.5	Cioday	Moderate	12:09	18.6	7.6	30.8	43.8	3.3	2.9
4,0	Cloudy	Moderate	12:05	18.6	7.6	30.9	42.7	3.3	3.1
4,5	Cloddy	Modelate	12:09	18.6	7.6	30.8	43.2	3.3	2.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
1.0	Cloudy	Moderate	12:03	23.0	7.2	12.9	79.4	6.0	3.2
1.0			12:07	22.0	7.2	14.1	82.2	6.3	3.1
3.5	Cloudy	Moderate	12:05	18.6	7.6	30.8	44.7	3.4	2.4
0.0	Ť	Moderate	12:09	18.6	7.6	30.8	43.8	3.3	2.9

	Name		Date
Conducted by:	Law Chun Hong	An and a second	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC2 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			12:16	22.4	7.4	15.0	69.7	5.3	5.1
0.5	Cloudy	Moderate	12:19	21.3	7.3	14.7	71.0	5.4	4.2
			12:16	22.6	7.3	12.2	70.4	5.4	3.0
1.0	Cloudy	Moderate	12:20	22.5	7.3	12.2	72.3	5.5	3.1
			12:16	19.7	7.7	24.8	65.4	5.0	1.7
1.5	Cloudy	Moderate	12:20	20.7	7.6	23.4	64.2	4.9	1.8
	Cloudy		12:16	20.7	7.5	22.0	65.7	5,0	2.0
2.0		Moderate	12:20	20.6	7.5	22.6	65.8	5.0	2.0
			12:17	19.8	7.6	27.2	63,8	4.9	1.6
2.5	Cloudy	Moderate	12:20	19.7	7.7	27.6	64.3	4.9	1.5
			12:17	18.7	7.5	30.6	60.9	4.6	1.9
3.0	Cloudy	Moderate	12:20	19.5	7.7	26.5	60.6	4,6	1.8
	A		12:17	18.5	7.7	30.8	48.5	3.7	1.9
3.5	Cloudy	Moderate	12:21	18.5	7.8	30.8	50.2	3.8	1.9

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		12:16	22.6	7.3	12.2	70.4	5.4	3.0	
	Moderate	12:20	22.5	7.3	12.2	72.3	5.5	3.1	
	Cloudy Moderate	11-4	12:17	18.7	7.5	30.6	60.9	4.6	1.9
3.0		12:20	19.5	7.7	26.5	60.6	4.6	1.8	

	Name	Signature	Date
Conducted by:	Law Chun Hong	27 2	8-Feb-13
Checked by:	W.K. Tang	Mari	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC3 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			11:46	20.5	7.3	17.1	59.1	4.5	2.7
0.5	Cloudy	Moderate	11:51	20.6	7.3	15.5	60.5	4.6	2.7
	1.0 Cloudy Moderate		11:47	19.4	7.6	24.3	58.1	4.4	2.1
1.0		11:51	19.5	7.6	22.6	58.7	4.5	2.1	
			11:47	19.8	7.6	18.7	65,0	4.9	1.9
1.5	Cloudy	/ Moderate	11:51	20,3	7,5	21.1	63.3	4.8	2.1
			11:47	19.2	7.7	27.3	64.8	4.9	1.7
2.0	Cloudy	Moderate	11:52	19.3	7.7	24.2	66.1	5.0	1.7
			11:48	18.7	7.8	30.3	64.1	4.9	1.4
2.5	Cloudy	Moderate	11:52	18.6	7.8	30.3	65.4	5.0	1.7
			11:48	18.5	7.8	30.7	64.5	4.9	2.4
3.0	Cloudy	Moderate	11:52	18.8	7.7	30.3	63.2	4.8	2.1
			11:48	18.4	7.9	30.8	65.7	5.0	3.3
3.5	3.5 Cloudy	Moderate	11:53	18.4	7.9	30.8	65.3	5.0	3.2
			11:48	18.3	7.9	30.8	68.3	5.2	10.3
4.0	4.0 Cloudy	Moderate	11:53	18.4	7.9	30.8	69.7	5.3	10.9

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		11:47	19.4	7.6	24.3	58.1	4.4	2.1	
1,0 Cloudy	Moderate	11:51	19.5	7.6	22.6	58.7	4.5	2.1	
		11:48	18.4	7.9	30.8	65.7	5.0	3.3	
3.5	Cloudy	Cloudy Moderate	11:53	18.4	7.9	30.8	65.3	5.0	3.2

	Name	Signatyre	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Kara	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC4 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			11:35	21.4	7.2	14.2	64.6	4.9	2.7
0.5	Cloudy	Moderate	11:39	21.4	7.2	14.2	63.3	4.8	2.7
	Claudu Madasak		11:35	21.4	7.2	14.1	60.9	4.6	2.6
1.0	Cloudy	Moderate	11:39	21.4	7.1	14.1	60.6	4.6	2.7
		Moderate	11:35	18.8	7.7	28,7	64.4	4.9	2.5
1.5	Cloudy		11:39	18.7	7.8	29.1	64.7	4.9	2.7
			11:35	18.6	7,8	30.3	66.3	5.1	2.8
2.0	Cloudy	Moderate	11:40	18.6	7.8	30.1	66.5	5.1	2.6
			11:36	18.5	7.8	30,5	66.5	5.1	2.8
2.5	Cloudy	Moderate	11:40	18.5	7.8	30.5	66.5	5.1	3.3
		M - 1 1 -	11:36	18.5	7,8	30.7	64.5	4.9	3.8
3,0	Cloudy	Moderate	11:40	18.5	7.8	30.7	64.6	4.9	3.2
			11:36	18.4	7.9	30,7	66.3	5.0	4.3
3.5	Cloudy	Moderate	11:41	18.4	7.9	30.7	67.4	5,1	4.3
			11:36	18.4	7.9	30.8	67.6	5.1	3.7
4.0	4.0 Cloudy	Moderate	11:41	18,4	7.9	30.8	68.0	5.2	4.0
			11:37	18.3	7.9	30.8	69.1	5.3	13.5
4.5	Cloudy	Moderate	11:41	18.3	7.9	30.8	69.8	5.3	14,9

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		oudy Moderate	11:35	21.4	7.2	14.1	60.9	4.6	2.6
1.0	1.0 Cloudy		11:39	21.4	7.1	14.1	60.6	4.6	2.7
	A: 1	Moderate	11:36	18.4	7.9	30.8	67.6	5.1	3.7
4.0	Cloudy		11:41	18.4	7.9	30.8	68.0	5.2	4.0

	Name	Signature	Date
Conducted by:	Law Chun Hong	791	8-Feb-13
Checked by:	W.K. Tang	Viva	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC5 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			10:52	19.9	7.4	20.8	51.9	4.0	2.6
0.5	Cloudy	Moderate	10:56	19.9	7.4	22.8	51.4	3,9	2.8
	O Cloudy Moderate		10:52	19.9	7.2	16.6	43.5	3.3	2.9
1.0		Moderate	10:57	20.0	7.2	17.2	45.1	3.4	3.1
			10:52	19.8	7.6	18,3	55.5	4.2	2.5
1.5	Cloudy	Moderate -	10:57	19.9	7.5	19.9	55.9	4.3	2.5
			10:53	19.9	7.6	19.3	59.5	4.5	2.3
2.0	- Cloudy	Moderate	10:57	19.7	7.6	20.4	58.2	4.4	2.1
			10:53	18.6	7.9	30.3	69.3	5.3	1.2
2.5	Cloudy	Moderate	10:58	18.5	7.9	29.6	70.0	5.3	1.3
			10:53	18.4	7.9	30.7	73.6	5.6	1.6
3.0	Cloudy	Moderate	10:58	18.5	7.9	29.3	73.3	5.6	1.4
			10:54	18.3	8.0	30.8	71.8	5.5	1.5
3.5	3.5 Cloudy	Moderate	10:58	18.3	8.0	30.9	74.9	5.7	1.5
			10:54	18.3	8.0	30.9	78.1	5.9	3.3
4.0	O Cloudy	Moderate	10:58	18.3	8.0	30.9	80.2	6.1	3.3

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		10:52	19.9	7.2	16.6	43.5	3.3	2.9	
1.0	1.0 Cloudy	Moderate	10:57	20.0	7.2	17.2	45.1	3.4	3.1
	Cloudy Moderate	10:54	18.3	8.0	30.8	71.8	5.5	1.5	
3.5		10:58	18.3	8.0	30,9	74.9	5.7	1.5	

	Name	Signature	Date
Conducted by:	Law Chun Hong	Ah.	8-Feb-13
Checked by:	W.K. Tang	Knai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC6 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Samp≣ng Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Öxygen (mg/L)	Turbidity (NTU)
			11:06	20.7	7.1	15.7	43.6	3.3	5.0
0.5	Cloudy	Moderate	11:11	20.4	7,3	18.1	39,6	3.0	4.2
1.0	Cloudy	Moderate	11:06	20.3	7.3	19.1	35.0	2.7	3.9
1.0	Cidudy	Moderate	11:12	20.2	7.3	19.3	37.1	2.8	3.9
1.5	Cloudy	oudy Moderate	11:06	20.2	7.4	18,6	45.6	3.5	3.7
1.5	Cidudy	Minderala	11:12	20.3	7,3	18.8	45.6	3.5	3.8
2.0	Cloudy	Moderate	11:06	19.6	7.6	24.4	42.8	3.3	3.0
2.0	Cioudy	Moderate	11:12	19.6	7.6	22.3	45.5	3.5	3.0
	Ola f .	Moderate	11:06	18.9	7.9	28.4	50.9	3.9	2.2
2.5	Cloudy	Moderate	11:12	18.8	7.8	28.2	61.6	4.7	2.1
3.0	Cloudy	Moderate	11:07	18.3	8.0	29.6	76.9	5.9	1.9
3.0	Cioudy	Moderate	11:13	18.6	7.9	30,5	76.4	5.8	2.0
	01		11:07	18.3	8,0	30.9	74.5	5.7	1.8
3.5	Cloudy	Moderate	11:13	18.3	8.0	30.9	75.7	5.8	1.8
4.0	0	11-1	11:07	18.2	8.0	30.8	76.6	5.8	2.4
4.0	Cloudy	Moderate	11:13	18.2	8.0	31.4	77.4	5.9	2,5
			11:08	18.2	8.0	30.9	78.5	6.0	2.0
4.5	Cloudy	Moderate	11:13	18.2	8,0	30.9	78.8	6,0	2.0
	AL. 1.		11:08	18.2	8.0	30.9	82.5	6.3	2.2
5.0	Cloudy	Moderate	11:14	18.2	8.0	30.9	83.1	6.3	2.2
			11:08	18.2	8.1	30.9	84.4	6.4	3.7
5.5	Cloudy	Moderate	11:14	18.2	8.1	30,9	84.4	6.4	3.0

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity pot	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbldity (NTU)
	Cloudy Moderate	14.1	11:06	20.3	7.3	19.1	35.0	2.7	3.9
1.0	Cloudy	Moderate	11:12	20.2	7.3	19.3	37.1	2.8	3.9
	0 11.		11:07	18.3	8.0	29.6	76.9	5.9	1.9
3.0	Cloudy	Moderate	11:13	18.6	7.9	30.5	76.4	5.8	2.0
	01	14-2	11:08	18.2	8.0	30.9	82.5	6.3	2.2
5.0	Cloudy	Moderate	11:14	18.2	8.0	30.9	83.1	6,3	2.2

	Name	Signature	Date
Conducted by:	Law Chun Hong	200	8-Feb-13
Checked by:	W.K. Tang	Mini	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC7 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			10:34	20.8	7.2	15.3	43.1	3.3	2.4
0.5	Cloudy	Moderate	10:39	20.2	7.2	16.3	43.9	3.3	2.5
	a		10:35	20.0	7.3	17.2	45.2	3.4	2.5
1.0	Cloudy	Moderate	10:39	19.6	7.5	18,9	47.0	3,6	2.2
			10:35	19.1	7.8	26.2	66.6	5.1	2.3
1.5	Cloudy	Moderate	10:40	19.1	7.8	26,3	63.7	4.9	2.3
	0	11	10:35	18.5	8.0	30.3	69.4	5.3	1.9
2.0	Cloudy	Moderate	10:40	18,5	7.9	29,9	68.2	5.2	1.7
	0	12.4	10:35	18.4	8.0	30.4	75.2	5.7	1.7
2.5	Cloudy	Moderate	10:40	18.4	8.0	30.6	74.2	5.7	1.7
	A)	14-1	10:36	18.4	8.0	30.8	72.0	5.5	1.3
3.0	Cloudy	Moderate	10:40	18.3	8.0	30.8	75.3	5.7	1.2
			10:36	18.4	8.0	30,8	75.2	5.7	1.3
3.5	Cloudy	Moderate	10:41	18.3	8.0	30.9	76.6	5.8	1.6
			10:36	18.3	8.0	30.9	76.1	5.8	1.7
4.0	Cloudy	Moderate	10:41	18.3	8.0	30.9	77.3	5,9	1.6
			10:37	18.2	8,0	31.0	78.7	6.0	2.4
4.5	Cloudy	Moderate	10:41	18.2	8.0	30.9	78.7	6.0	2.7
			10:37	18.2	8.1	31.0	84.5	6.4	2.0
5.0	Cloudy	Moderate	10:41	18.2	8.1	31.0	84.0	6.4	2.5
			10:37	18.2	8.1	31.0	84.2	6.4	3.5
5.5	Cloudy	Moderate	10:42	18.2	8.1	31.0	84.2	6.4	3.7

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			10:35	20.0	7.3	17.2	45.2	3.4	2.5
1.0	Cloudy	Cloudy Moderate	10:39	19.6	7.5	18.9	47.0	3.6	2.2
			10:36	18.4	8.0	30.8	72.0	5.5	1.3
3.0	Cloudy	Moderate	10:40	18.3	8.0	30.8	75.3	5.7	1.2
			10:37	18.2	8.1	31.0	84.5	6.4	2.0
5.0	5.0 Cloudy	Moderate	10:41	18.2	8.1	31.0	84.0	6.4	2.5

	Name	Signature	Date
Conducted by:	Law Chun Hong	24	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB1 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
			9:42	18.4	8.3	31.2	90.4	7.1	3.7
0.5	Cloudy	Moderate	9:45	18.4	8,3	31.4	80.5	6.3	4.3
			9:42	18,4	8.3	31.3	88.1	6,9	3.8
1.0	Cloudy	Moderate	9:45	18.4	8.3	31.4	79.8	6.2	4.0
			9;42	18.4	8.3	31.4	86.0	6.7	3,9
1.5	Cloudy	Moderate	9:45	18.4	8.3	31.5	79.6	6.2	4.0
	A. I		9:42	18.4	8.3	31.4	84.6	6,6	3.8
2.0	Cloudy	Moderate	9:46	18.4	8.3	31.5	79.6	6.2	3.9
			9:43	18.4	8,3	31.4	84.0	6.5	3.7
2.5	Cloudy	Moderate	9:46	18.4	8.3	31.5	79.3	6,2	4.1
			9:43	18.4	8.3	31.4	83.7	6.5	3.7
3.0	Cloudy Moderate	Moderate	9:46	18.4	8,3	31.5	79.3	6.2	4.1
			9:43	18.4	8.3	31.4	83.3	6,5	3.9
3.5	Cloudy	Moderate	9:47	18.4	8.3	31.5	78.8	6.1	4.1
			9:43	18.4	8.3	31.5	82.9	6.5	3.9
4.0	Cloudy	Moderate	9:47	18.4	8.3	31.5	78.8	6.1	4.0
			9:43	18.4	8.3	31.5	82.7	6.4	3,9
4.5	Cloudy	Moderate	9:47	18.4	8.3	31.5	79.1	6.2	4.1
			9:43	18.4	8.3	31.5	82.6	6.4	4.1
5.0	Cloudy	Moderate	9:47	18.4	8.3	31.5	79.7	6.2	4.3
			9:44	18.4	8.3	31.5	82.5	6.4	4.2
5.5	Cloudy	Moderate	9:47	18.4	8.3	31.5	80.5	6.3	4.3
			9:44	18.3	8.3	31.6	82.7	6.4	4.2
6.0	Cloudy	Moderate	9:47	18.4	8.3	31.5	80.7	6.3	4.4

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			9:42	18.4	8.3	31.3	88.1	6.9	3.8
1.0	Cloudy	Moderate	9:45	18.4	8.3	31.4	79.8	6.2	4.0
			9:48	18.4	8.3	31.4	80.2	6.2	4.0
3.25	Cloudy	Moderate	9:48	18.4	8.3	31.4	78.9	6.1	3.9
	· · · · · · · · · · · · · · · · · · ·		9:44	18.4	8.3	31.5	82.5	6.4	4.2
5.5	5 Cloudy Moderate	9:47	18.4	8.3	31.5	80.5	6.3	4.3	

	Name	Signature	Date
Conducted by:	Lam Ho Chun	ih_	8-Feb-13
Checked by:	W.K. Tang	Kwa	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB2 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTL
			9:58	18.3	8,4	31.6	95.2	7.4	4.5
0.5	Cloudy	Moderate	10:00	18.3	8.4	31.6	85,6	6.7	5.2
			9:58	18.3	8.4	31.6	92.0	7.2	4.5
1.0	Cloudy	Moderate	10:01	18.3	8.4	31.6	83.9	6.5	4.7
			9:58	18.3	8.4	31.6	89.6	7.0	4.4
1.5	Cloudy	Moderate	10:01	18.3	8.4	31.6	83.7	6.5	4.8
	011-		9:58	18.3	8.4	31.6	88.4	6.9	4.4
2.0	Cloudy	Moderate	10:01	18.3	8.4	31.6	83.9	6,5	4.9
			9:58	18.3	8.4	31,6	88.2	6.9	4.3
2.5	Cloudy	Moderate	10:01	18.3	8.4	31.6	84.6	6.6	4.9
		*******	9:58	18.3	8.4	31.6	88.7	6.9	4.4
3.0	Cloudy	Moderate	10:01	18.3	8.4	31.6	85.3	6.6	4.8
		44. 1	9:58	18,3	8.4	31.6	89.6	7.0	4.4
3.5	Cloudy	Moderate	10:01	18.3	8.4	31.6	85.4	6.7	4.7
			9:59	18.3	8.4	31.6	90,5	7.1	4.6
4.0	Cloudy	Moderate	10:02	18.3	8.4	31.6	85.7	6.7	4.7
		44.1	9:59	18.3	8.4	31.6	90.1	7.0	4.6
4.5	Cloudy	Moderate	10:02	18.3	8.4	31.6	86.2	6.7	4.8
			9:59	18.3	8.4	31.6	89.9	7.0	5.2
5,0	Cloudy	Moderate	10:02	18,3	8.4	31.6	86.2	6.7	4.7
		Ī	9:59	18.3	8.4	31.6	89.8	7.0	5.4
5.5	Cloudy	Moderate	10:02	18.3	8,4	31.6	85,6	6.7	4.7
			9:59	18.3	8.4	31.6	89.8	7.0	5.7
6.0	Cloudy	Moderate	10:02	18.3	8.4	31.6	84.9	6.6	4.8
			10:00	18.3	8.4	31.6	89.8	7.0	5.3
6.5	Cloudy	Moderate	10:03	18.3	8.4	31.6	84.5	6.6	4.8
			10:00	18.3	8.4	31.6	89.5	7.0	6.7
7.0	Cloudy	Moderate	10:03	18.3	8.4	31.6	84.1	6.6	7.2

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
			9:58	18.3	8.4	31.6	92.0	7.2	4.5
1.0	Cloudy	Moderate	10:01	18.3	8.4	31.6	83,9	6.5	4.7
			10:03	18.3	8.4	31.6	83.5	6,5	5.1
3.75	Cloudy	Moderate	10:03	18.3	8.4	31,6	83.5	6.5	4.9
			10:00	18.3	8.4	31.6	89.8	7.0	5.3
6.5 Cloudy	Moderate	10:03	18.3	8.4	31.6	84.5	6.6	4.8	

	Name	Signature	Date
Conducted by:	Lam Ho Chun	lh	8-Feb-13
Checked by:	W.K. Tang	Wwa:	8-Feb-13

Contract No. KL/2010/02

Kai Tak Development

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB3 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Safinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (RTU)
			10:36	18.2	8.5	31.7	92.7	7.2	2.6
0.5	Cloudy	Moderate	10:41	18 2	8.5	31.6	90.1	7.0	2.6
			10:38	18.2	6.5	31.6	91.2	7.1	2.5
1.0	Cloudy	Moderate	10:41	18.2	8.5	31.7	89.9	7.0	26
			10.36	18.2	8.5	31,7	\$0.8	7.1	25
1.5	Cloudy	Moderate	10:41	18.2	8.5	31.6	90.0	7.0	25
			10.37	18 2	8.5	31.7	89.9	7,0	26
20	Cloudy	Moderate	10:41	18.2	8.5	31.6	90.2	7.0	26
			10:37	18.2	8.5	31.6	89.7	7.0	26
25	Cloudy	Moderate	10:41	18.2	8.5	31,6	90.3	7.1	2.5
			10:37	182	8.5	31.7	89.6	7.0	2.6
3.0	Cloudy	Moderate	10:41	18 2	8.5	31.6	90.3	7.1	25
			10:37	18.2	8.5	31.7	69.4	7.0	25
3.5	Cloudy	Moderate	10:41	18.2	8.5	31.6	90.6	7.1	2.5
			10.38	182	8.5	31.6	69.4	7.0	2.6
4.0	Cloudy	Moderate	10.42	18.2	8.5	31.6	91.3	7.1	25
			10:38	18.2	8.5	31.6	69.4	7.0	25
4.5	Cloudy	Moderate	10:42	18.2	8.6	31.7	91.7	7.2	2.8
			10:38	18.2	8.5	31.6	89.4	7.0	2.5
5.0	Cloudy	Moderate	10:42	16.2	8.5	31.7	92.0	7.2	26
			10.38	18.2	8.5	31.7	89.3	7.0	2.5
5.5	Cloudy	Moderate	10.42	18 2	8.5	31.7	92.0	7.2	2.7
	I		10:38	18.2	8.5	31.6	89.4	7.0	2.5
6.0	Cloudy	Moderate	10:42	18.2	8.5	31.6	92.0	7.2	2.6
			10:38	18.2	8.5	31.7	89.4	7.0	2.8
6.6	Cloudy	Moderate	10:42	18 2	8.5	31.6	92.1	7.2	2.7
	<u> </u>		10:39	18.1	8.5	31.8	91.8	7.2	29
7.0	Cloudy	Moderate	10:43	18.2	8.5	31,6	92.3	7.2	3.4
		1	10:39	18.0	8.6	31.9	92.2	7.2	3.3
7,5	Cloudy	Moderate	10:43	18.1	8.5	31.8	92.4	7.2	3.7
		<u></u>	10:39	18.0	85	31.9	92.4	7.2	3.6
8.0	Cloudy	Moderate	10:43	18.0	8.5	31.8	94.4	7.4	4.5
	<u> </u>	<u> </u>	10.39	18.0	8.5	31.8	92.6	7.2	4.3
8.5	Cloudy	Moderate	10:44	18.0	8.5	31.9	94.4	7.4	4.5

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			10:36	18.2	8.5	31.6	91.2	7.1	2.5
1.0	Cloudy	Moderate	10:41	18.2	8.5	31.7	89.9	7.0	26
			10.38	18.2	8.5	31.6	89.4	7.0	2.5
4.6	Cloudy	Moderate	10.42	18.2	8.5	31.7	91.7	7.2	2.6
			10:39	18.0	8.5	31.9	\$2.4	7.2	3.6
8.0	Cloudy	Moderate	10:43	16.0	8.5	31.8	94.4	7.4	4.5

	Name	Signature	Date
Conducted by:	Lam Ho Chun	CL	8-Feb-13
Checked by:	W.K. Tang	Muai	8-Feb-13

Contract No. KL/2010/02

Kai Tak Development

– Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at OB1 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
			10:16	18,3	8.4	31.6	94.6	7.4	2.8
0.5	Cloudy	Moderate	10:19	18.3	8.4	31.6	86.6	6.8	2.7
			10:16	18.3	8.4	31.6	90.7	7.1	3.2
1.0	Cloudy	Moderate	10:19	18.3	8.4	31.6	85.6	6.7	2.7
			10:16	18.3	8.4	31.6	89.8	7.0	3.0
1.5	Cloudy	Moderate	10:20	18.3	8.4	31.6	85.2	6.6	2.7
	A		10:16	18.3	8.4	31.6	87.3	6.8	2.8
2.0	Cloudy	Moderate	10:20	18.3	8.4	31.6	84.8	6.6	2.7
			10:16	18.3	8.4	31.6	86,6	6.8	2.7
2.5	Cloudy	Moderate	10:20	18.3	8.4	31,7	84.8	6.6	2.6
			10:16	18.3	8.4	31.6	86.0	6.7	2.7
3.0	Cloudy	Moderate	10:20	18.2	8.4	31.7	85.1	6,8	2.6
			10:17	18.3	8,4	31.6	85.6	6.7	2.7
3.5	Cloudy	Moderate	10:20	18.2	8.5	31.7	85.7	6.7	2.8
			10:17	18.3	8.4	31,6	85.5	6.7	2.8
4.0	Cloudy	Moderate	10:20	18.2	8.5	31.7	86.5	6.8	2.8
			10:17	18.3	8.4	31.6	85.4	6.7	2.8
4.5	Cloudy	Moderate	10:21	18.2	8.5	31.8	88.1	6.9	2.8
			10:17	18.3	8.4	31.6	85,3	6.7	3.2
5.0	Cloudy	Moderate	10:21	18.2	8.5	31.8	88.4	6.9	2.6
			10:17	18.3	8.4	31.7	85.4	6.7	3.2
5.5	Cloudy	Moderate	10:21	18.1	8.5	31.8	89.1	7.0	2.8
			10:18	18.2	8.5	31.7	86.2	6.7	3.2
6.0	Cloudy	Moderate	10:21	18.0	8.5	31.9	89.6	7.0	2.6
		İ	10:18	18.2	8.5	31.8	87.7	6,8	3.1
6.5	Cloudy	Moderate	10:21	18.0	8.5	31.9	90.6	7.1	2.6
			10:18	18.0	8.5	31.9	88.4	6.9	2.7
7.0	Cloudy	Moderate	10:21	18.0	8.5	31.9	91.4	72	2.6
			10:18	18.0	8.5	31.9	89.6	7.0	2.7
7.5	Cloudy	Moderate	10:22	18.0	8.5	32.0	92.4	7.2	2.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbicity (NTU)
	1.0 Cloudy		10:15	18.3	8.4	31.6	90.7	7.1	3.2
1.0	Cloudy	Moderate	10:19	18.3	8.4	31.6	85.6	6.7	2.7
		10:17	18.3	8.4	31.6	85.5	6.7	2.8	
4.0	Cloudy	Moderate	10:20	18.2	8.5	31.7	86.5	6.8	2.8
			10:18	18.0	8.5	31.9	88,4	6.9	2.7
7.0 Cloudy	Moderate	10:21	18.0	8.5	31.9	91.4	7.2	2.6	

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	lmai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH1 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTI
			11:21	18.0	8.5	32.0	98.2	7.7	2.8
0.5	Cloudy	Moderate	11:33	18.0	8.6	32.0	95.0	7.4	2.9
			11:21	18.0	8.5	32.0	96.5	7.5	2.8
1.0	Cloudy	Moderate	11:33	18.0	8.6	32.0	94.9	7.4	3.2
			11:21	18.0	8.5	32.0	96.1	7.5	2.9
1.5	Cloudy	Moderate	11:33	18,0	8.6	31.9	94.9	7.4	3.1
			11:22	18.0	8.5	31.9	95.3	7.5	2.9
2.0	Cloudy	Moderate	11:33	18.0	8.6	32.0	94.9	7.4	3.0
			11:22	18.0	8.5	31.9	94.7	7.4	3.0
2.5	Cloudy	Moderate	11:33	18.0	8.6	32.0	95.1	7.4	2.8
			11:23	18.0	8.6	32.0	95.8	7.5	2.7
3.0	Cloudy	Moderate	11:33	18.0	8.5	31.9	95.4	7.5	2.7
7.00			11:23	18.0	8.6	31.9	95,5	7.5	2.7
3.5	Cloudy	Moderate	11:34	18.0	8.6	31.9	95.5	7.5	2.7
			11:24	18.0	8.6	32.0	95.5	7.5	2.7
4.0	Cloudy	Moderate	11:34	18.0	8.5	31.9	95.8	7.5	2.7
			11:24	18.0	8.6	32.0	95,5	7.5	2.3
4.5	Cloudy	Moderate	11:34	18.0	8.5	31.9	96.1	7.5	2.7
			11:24	18.0	8.6	32.0	95.7	7.5	2.4
5,0	Cloudy	Moderate	11:34	18.0	8.6	32.0	95.9	7.5	2.7
			11:24	18.0	8.6	32.0	95.9	7.5	2.4
5.5	Cloudy	Moderate	11:34	18.0	8.5	31.9	96.1	7.5	2.5
			11:24	18.0	8,6	32.0	95.9	7,5	2.5
6.0	Cloudy	Moderate	11:34	18.0	8.6	31.9	96.3	7.5	2.9
			11:25	18.0	8.6	32.0	95.9	7.5	2.5
6.5	Cloudy	Moderate	11:34	18.0	8.6	32.0	96.5	7.6	2.7
****			11:25	18.0	8.6	32.0	96.0	7.5	2.4
7.0	Cloudy	Moderate	11:34	18.0	8.6	32.0	96.6	7.6	2.5
			11:25	18.0	8.6	32.0	96.0	7.5	2.5
7.5	Cloudy	Moderate	11:35	18.0	8.6	32.0	96.7	7.6	2.4
*****			11:25	18.0	8.6	32.1	96.0	7.5	3.0
8.0	Cloudy	Moderate	11:35	18.0	8.6	32.0	96.6	7.6	2,5
			11:25	18.0	8.6	32.0	95.9	7.5	2.8
8.5	Cloudy	Moderate	11:35	18.0	8.6	32.1	96.2	7.5	2.5
			11:26	18.0	8.6	32.1	95.9	7,5	2.5
9.0	Cloudy	Moderate	11:35	18.0	8.6	32.0	96.2	7.5	2.5
			11:26	18.0	8.6	32.1	96.0	7.5	2.6
9.5	Cloudy	Moderate	11:35	18.0	8.6	32.0	96.1	7.5	2.5
			11:26	18.0	8.6	32.1	96.0	7.5	2.5
10.0	Cloudy	Moderate	11:35	18.0	8.6	32.1	96.0	7.5	2.4

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH1 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

40 F	Cloudy	Moderate	11:26	18.0	8.6	32.1	96.0	7.5	2.5
10.5	Cloudy	Woderate	11:35	18.0	8.6	32.1	96.0	7.5	2.8
	<u> </u>		11:26	18.0	8.6	32.1	96.0	7.5	3.1
11.0	Cloudy	Moderate	11:35	18.0	8.6	32.1	95.9	7.5	2.8
			11:27	18.0	8.6	32.1	96.2	7.5	2.8
11.5	Cloudy	Moderate	11:35	18.0	8,6	32.1	95.9	7.5	2.8
			11:27	18.0	8.6	32.1	96.2	7.5	2.7
12.0	Cloudy	Moderate	11:35	18.0	8.6	32.1	95.9	7.5	2.7
			11:27	18.0	8.6	32,1	96.2	7.5	2.7
12.5	Cloudy	Moderate	11:36	18.0	8,6	32.0	95.9	7.5	2.6
			11:27	18.0	8.6	32.1	96.3	7.5	2.6
13.0	Cloudy	Moderate	11:36	18.0	8.6	32.1	96.0	7.5	2.5
			11:27	18.0	8.6	32.1	96.1	7.5	2.5
13.5	Cloudy	Moderate	11:36	18.0	8.6	32.1	96.0	7.5	2.5
		1	11:27	18.0	8.6	32.1	96.3	7.5	2.5
14.0	Cloudy	Moderate	11:36	18.0	8.6	32.1	95.9	7.5	2.6
			11:27	18.0	8.6	32.1	96.3	7.5	2.7
14.5	Cloudy	Moderate	11:36	18.0	8.6	32.1	95,9	7.5	2.5
			11:27	18,0	8.6	32.1	96.2	7.5	2.8
15.0	Cloudy	Moderate	11:36	18.0	8.6	32.1	95.9	7.5	2.4
			11:27	18.0	8.6	32.1	96.1	7.5	2.8
15.5	Cloudy	Moderate	11:36	18.0	8.6	32.1	95.9	7.5	2.4
***************************************			11:27	18.0	8.6	32.1	96.1	7.5	2.8
16.0	Cloudy	Moderate	11:36	18.0	8.6	32.1	95.9	7.5	2.7
			11:28	18.0	8.6	32.1	96.2	7.5	2.5
16.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.8	7.5	2.5
-			11:28	18.0	8.6	32.1	96.2	7.5	2.6
17.0	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.8	7.5	2.6
			11:28	18.0	8.6	32.1	96.2	7.5	3.0
17.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.8	7.5	2.8
			11:28	18.0	8.6	32.1	96.2	7.5	3.2
18.0	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.9	7.5	2.6
			11:29	18.0	8.6	32.1	96.4	7.5	3.1
18.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.8	7.5	2.6
	T.		11:29	18.0	8.6	32.1	96.1	7.5	2.6
19.0	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.7	7.5	2.5
			11:29	18.0	8.6	32.1	96.2	7.5	2.6
19.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.7	7.5	2.5
		1	<u> </u>	<u> </u>	<u> </u>				
			11:29	18.0	8.6	32.1	96.1	7.5	3,6

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH1 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

f			,		1	ï			T
20.5	Cloudy	Moderate	11:29	18.0	8.6	32.1	96.0	7.5	2.7
20.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.7	7.5	2.5
			11:30	18.0	8.6	32.1	96.0	7.5	2.7
21.0	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.7	7.5	2.5
	011-		11:30	18.0	8.6	32.1	96.0	7.5	3.0
21.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.7	7.5	2.5
	A. (11:30	18.0	8.6	32.1	95.8	7.5	2.8
22.0	Cloudy	Moderate	11:37	18.0	8,6	32.1	95.6	7.5	2.6
		N 1 1 1 1 1 1 1 1 1 1	11:30	18.0	8.6	32.1	95.9	7.5	2.7
22.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.5	7.5	2.6
	01		11:30	18.0	8.6	32.1	95.7	7.5	2.8
23.0	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.5	7.5	2.6
20.5		N 411-	11:30	18.0	8.6	32.1	95.5	7.5	3.0
23.5	Cloudy	Moderate	11:37	18.0	8.6	32.1	95.5	7.5	2.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		M - d) -	11:21	18.0	8.5	32.0	96,5	7.5	2.8
1.0	Cloudy	Moderate	11:33	18.0	8.6	32.0	94.9	7.4	3.2
			11:27	18.0	8.6	32.1	96.2	7.5	2.7
12.0	Cloudy	Moderate	11:35	18.0	8.6	32.1	95.9	7.5	2.7
			11:30	18.0	8.6	32.1	95.7	7.5	2,8
23.0	23.0 Cloudy	Moderate	11:37	18.0	8.6	32.1	95.5	7.5	2.6

	Name	Signature	Date
Conducted by:	Lam Ho Chun	th	8-Feb-13
Checked by:	W.K. Tang	lma:	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH2 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.5m

Water Deptin (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pH	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			12:08	18.0	8.5	31.9	96.9	7.6	4.3
0.5	Cloudy	Moderate	12:14	18.0	8,5	31.9	97.3	7.6	4.9
			12:08	18.0	8.5	31.9	95.4	7.5	3,3
1.0	Cloudy	Moderate	12:14	18.0	8.5	31.9	95.7	7.5	3.5
			12:08	18.0	8.5	31.9	94.8	7.4	3.6
1.5	Cloudy	Moderate	12:14	18.0	8.5	31.9	95.0	7.4	3.8
		10-1	12:08	18.0	8.6	32.0	95.2	7.4	2.7
2.0	Cloudy	Moderate	12:14	18.0	8.6	32.0	95.3	7.5	2.6
	QL	14-4	12:09	18.0	8,6	31.9	95.5	7.5	2.7
2.5	Cloudy	Moderate	12:14	18.0	8.6	32.0	95,6	7.5	2.5
	0	14-1	12:09	18.0	8.5	31.9	95.0	7.4	2.6
3.0	Cloudy	Moderate	12:14	18.0	8.6	31.9	95,0	7.4	2.6
	01	U	12:09	18.0	8.6	32.0	95.7	7.5	2.3
3,5	Cloudy	Moderate	12:14	18.0	8.6	32.0	95.7	7.5	2.3
	A		12:09	18.0	8.6	32.0	95.8	7.5	2.3
4.0	Cloudy	Moderate	12:14	18.0	8.6	32.0	96.0	7.5	2.3
4.5	011	Madasala	12:09	18.0	8.6	32.0	95.9	7.5	2.4
4.5	Cloudy	Moderate	12:15	18.0	8.6	32.0	95.9	7.5	2.3
		******	12:10	18.0	8.6	32.1	96.0	7.5	2.4
5.0	Cloudy	Moderate	12:15	18.0	8.6	32.1	96.3	7.5	2.6
	Claudi	Madarata	12:10	18.0	8.6	32.1	96.5	7.6	2.6
5.5	Cloudy	Moderate	12:15	18.0	8.6	32.1	96.3	7.5	2.6
6.0	Cloudy	Moderate	12:10	18.0	8.6	32.1	96.5	7.5	2.4
6.0	Cloudy	Moderate	12:15	17.9	8.6	32.1	96.5	7.6	2.3
6.5	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.7	7.6	2.2
0.5	Cidddy	Modelate	12:15	17.9	8.6	32.1	96,6	7.6	2.2
7.0	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.7	7.6	2.3
7.0	Cioday	Widdelate	12:15	17.9	8.6	32.1	96.8	7.6	2.3
7.5	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.9	7.6	2.5
7.0	Cioday	Micdelate	12:16	17.9	8.6	32.1	96.9	7.6	2.2
8.0	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.9	7.6	2.5
8.0	Cioddy	Moderate	12:16	17.9	8.6	32,1	96.9	7.6	2.3
8.5	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.8	7.6	2.2
0.5	Cioday	Moderate	12:16	17.9	8.6	32.1	96.8	7.6	2.2
9.0	Cloudy	Moderate	12:11	17.9	8.6	32.1	96.8	7.6	2.3
5.0	Siddy	***************************************	12:16	17.9	8,6	32.1	96.9	7.6	2.2
9.5	Cloudy	Moderate	12:11	17.9	8.6	32.2	96.8	7.6	2.2
3.3	Cloudy	11/2/20/21/0	12:16	17.9	8,6	32.1	96.8	7.6	2.2
10.0	Cloudy	Moderate	12:11	17.9	8.6	32.2	96.9	7.6	2.3
10.0	Oloudy	1110001210	12:16	17.9	8.6	32.2	97.0	7.6	2.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH2 - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.5m

		II-death	12:12	17.9	8.6	32.1	97.0	7.6	2.2
10.5	Cloudy	Moderate	12:16	17.9	8.6	32.2	97.0	7.6	2.3
			12:12	17.9	8.6	32.2	96,9	7.6	2.1
11.0	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.9	7.6	2.1
		**	12:12	17.9	8.6	32.1	96.9	7.6	2.4
11.5	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.9	7.6	2.4
40.0	Q	Marianala	12:12	17.9	8.6	32.2	96.8	7.6	2.3
12.0	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.8	7.6	2.3
40.5	Q		12:12	17.9	8.6	32.1	96.8	7.6	2.3
12.5	Cloudy	Moderate	12:17	17.9	8.6	32.1	96.8	7.6	2.2
			12:12	17.9	8.6	32.1	96.7	7.6	2.2
13.0	Cloudy	Moderate	12:17	17.9	8,6	32.2	96.7	7.6	2.2
		**	12:12	17.9	8.6	32.2	96.7	7.6	2.2
13.5	Cloudy	Moderate	12:17	17.9	8,6	32.1	96.7	7.6	2.2
	Q14	16-2	12:12	17.9	8,6	32.2	96.7	7.6	2.2
14.0	Cloudy	Moderate	12:17	17.9	8.6	32.1	96.7	7.6	2.2
			12:13	17.9	8.6	32.1	96.7	7.6	2.1
14.5	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.7	7,6	2.2
4.5.4		10-1	12:13	17.9	8.6	32.2	96.6	7.6	2.1
15.0	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.6	7.6	2.2
45.5	<u></u>	14	12:13	17.9	8.6	32.2	96.5	7.6	2.1
15.5	Cloudy	Moderate	12:17	17.9	8.6	32.2	96.5	7.5	2.2
40.0	Olavada.	Madazat	12:13	17.9	8.6	32.2	96.6	7.6	2.2
16.0	Cloudy _	Moderate	12:18	17.9	8.6	32.2	96.6	7.6	2.1
40.5	Claud	Madagata	12:13	17.9	8.6	32.2	96.5	7.5	2.1
16.5	Cloudy	Moderate	12:18	17.9	8.6	32.2	96.5	7.5	2.2
47.0		Madassia	12:13	17.9	8.6	32.2	96.2	7.5	2.3
17.0	Cloudy	Moderate	12:18	17.9	8.6	32.2	96,3	7.5	2.3

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	1.0 Cloudy		12:08	18.0	8.5	31.9	95,4	7.5	3.3
1.0		Moderate	12:14	18.0	8.5	31.9	95.7	7.5	3.5
		Moderate	12:19	17.9	8.6	32.1	96.4	7.5	2.3
8.75	Cloudy		12:19	17.9	8.6	32.1	96.4	7.5	2.2
			12:13	17.9	8.6	32.2	96.5	7.5	2.1
16.5	16.5 Cloudy	Moderate	12:18	17.9	8.6	32.2	96.5	7.5	2.2

- Adv	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Knai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at JVC - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			11:19	21.1	7.1	14.5	15.3	1.2	24.7
0.5	Cloudy	Moderate	11:23	21.1	7.1	14.5	15.1	1.2	24.8
	Cloudy M	Madada	11:19	19.8	7.5	22.8	40,5	3.1	13.5
1.0		Moderate	11:24	19.9	7.5	21.6	41.2	3.1	13,5
		Moderate	11:20	19.6	7.6	23.9	51.3	3.9	7.7
1.5	Cloudy		11:24	19.6	7.6	24.2	50.8	3.9	7.7
	011-	l de desete	11:20	18.6	7.9	30.0	64.7	4.9	2.9
2.0	Cloudy	Moderate	11:24	18.5	7.9	30.1	64.5	4.9	2.7
0.5			11:20	18.5	7.9	30.5	72.1	5.5	2.0
2.5	Cloudy	Moderate	11:25	18.4	7.9	30.5	71.9	5.5	2.0
20	0.	14-4	11:21	18.4	7.9	30.6	73.9	5.6	2.5
3.0	Cloudy	Moderate	11:25	18.4	7.9	30.6	73.9	5.6	2.3
			11:21	18.3	7.9	30.8	73.2	5,6	3.2
3.5	3,5 Cloudy	Moderate :	11:25	18.3	7.9	30.8	74.1	5.6	3.1
40	Claud	Madasaks	11:21	18.3	7.9	30.9	73.2	5.6	8.6
4.0	Cloudy Moderate	windelate	11:25	18.3	7.9	30.9	72.9	5.6	8.9

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt		Dissolved Oxygen (mg/L)	Turbidity (NTU)
			11:19	19.8	7.5	22.8	40.5	3.1	13.5
1.0	Cloudy	Moderate	11:24	19.9	7.5	21.6	41.2	3.1	13.5
	3.5 Cloudy	Cloudy Moderate	11:21	18.3	7.9	30.8	73.2	5.6	3.2
3.5			11:25	18.3	7.9	30.8	74.1	5.6	3.1

	Name	Signature	Date
Conducted by:	Law Chun Hong	神	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at KT1 - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Safinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	****		10:13	19.1	7.6	21.2	69.1	5.3	1.9
0.5	Cloudy	Moderate	10:19	19.1	7.6	21.0	70.0	5.3	1.9
	*****		10:13	19.1	7.8	23.1	78.2	6.0	1.5
1.0	Cloudy	Moderate	10:19	18.9	7.9	23,5	81.1	6.2	1.3
			10:14	18,8	8.0	29.0	81.1	8.2	1.1
1.5	Cloudy	Moderate	10:20	18.8	8.0	25.6	86.7	6.6	1,1
			10:14	18.4	8.1	30.5	87.8	6.7	1.0
2.0	Cloudy	Moderate	10:20	18.7	8.1	29.6	88,7	6.8	1.0
			10:14	18.4	8.1	30.5	88.6	6.7	1.0
2.5	Cloudy	Moderate	10:20	18.4	8.1	30.5	90.4	6.9	1.0
		Moderate	10:14	18.3	8.1	30.6	89.2	6.8	1.0
3.0	Cloudy		10:20	18.4	8.1	30.6	91.3	7.0	1.0
			10:15	18.3	8.1	30.7	90.4	6.9	1.2
3.5	Cloudy	Moderate	10:21	18.3	8.1	30.7	91.6	7.0	1.1
			10:15	18.2	8.1	30.8	91.1	6.9	1.1
4.0	Cloudy	Moderate	10:21	18.2	8.1	30.9	91.9	7.0	1.0
			10:15	18.2	8.1	30.9	91.9	7.0	1.2
4.5	Cloudy	Moderate	10:21	18.2	8.1	31.0	92.0	7.0	1,3
			10:16	18.2	8.1	30.9	92.1	7.0	1.2
5.0	Cloudy	Moderate	10:22	18.1	8.1	31.0	94.0	7.2	1.2
			10:16	18.1	8.1	31.0	93.3	7.1	1.7
5.5	Cloudy	Moderate	10:22	18.1	8.1	31.0	95,1	7.2	1.8
			10:16	18.1	8.1	31.0	93.8	7.1	1.8
6.0	Cloudy	Moderate	10:22	18.1	8.1	31.0	95.1	7.2	2.0

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity pot	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	1.0 Cloudy		10:13	19.1	7.8	23.1	78.2	6.0	1.5
1.0		Moderate	10:19	18.9	7.9	23.5	81.1	6.2	1.3
		Moderate	10:15	18.4	8.1	30.6	90.5	6.9	1.6
3.25	Cloudy		10:21	18.4	8.1	30.6	91.5	7.0	1.6
			10:16	18.1	8.1	31.0	93.3	7.1	1.7
5.5	5.5 Cloudy	Moderate	10:22	18.1	8.1	31.0	95.1	7.2	1,8

	Name	Signature	Date
Conducted by:	Law Chun Hong	24	8-Feb-13
Checked by:	W.K. Tang	Vivai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at KTN - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			12:26	21.7	7.4	16.7	73.2	5.6	14.1
0.5 Cloudy	Moderate	12:30	22.4	7.3	14.2	71.4	5.4	11.9	
			12:27	20.5	7.6	23.7	62.4	4.8	2.3
1.0	Cloudy	Moderate	12:30	20.6	7.6	23.3	61.9	4.7	2.5
		Moderate	12:27	19.8	7.6	26.4	59.7	4.5	2.1
1.5	Cloudy		12:31	19.9	7.6	26.2	60.0	4.6	2.0
			12:27	18.8	7.6	30.2	48.7	3,7	1.8
2.0	Cloudy	Moderate	12:31	18.8	7.6	30.3	48.2	3.7	1.8

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	oudy Moderate	12:32	19.8	7.6	25.2	59.7	4.6	2.1	
1.25	Cloudy	Moderate	12:33	19.8	7.6	25.1	59.6	4.5	2.1

	Name	Signature	Date
Conducted by:	Law Chun Hong	R	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Tai Wan - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			10:56	18.1	8.5	31.8	96.3	7.5	2.4
0.5	Cloudy	Moderate	11:04	18.0	8,5	31.9	97.0	7.6	2.4
			10:57	18.1	8.5	31.8	95.5	7.5	2.3
1.0	Cloudy	Moderate	11:04	18.0	8,5	31.8	96.2	7.5	2.4
			10:57	18.1	8.5	31.9	95.1	7.4	2.3
1.5	Cloudy	Moderate	11:04	18.0	8,5	31.8	95.5	7.5	2.3
			10:57	18.1	8.5	31.9	95.0	7.4	2.3
2.0	Cloudy	Moderate	11:04	18.0	8.5	31.9	95.2	7.4	2.3
^.	01	Madasala	10:57	18.1	8.5	31.9	95.0	7.4	2.3
2.5	Cloudy	Moderate	11:05	18.0	8.6	32.0	95.3	7.5	2.5
			10:57	18.1	8,5	31.9	95.0	7.4	2.4
3.0	Cloudy	Moderate	11:05	18.0	8.6	32.0	96.1	7.5	2.6
2.5	01	Madada	10:57	18.0	8.5	32.0	95.2	7.4	2.4
3.5	Cloudy	Moderate	11:05	18.0	8.6	32.0	96.2	7.5	2.6
40	Oleverte	Madasata	10:58	18.0	8.6	32.1	94.6	7.4	2.3
4.0	Cloudy	Moderate	11:05	18.0	8.6	32.0	96.3	7.5	2.5
	Olevada	Moderale	10:58	18.0	8.6	32.0	95.9	7.5	2.4
4.5	Cloudy	Miodelate	11:06	18.0	8.6	32.0	96.6	7.6	2.3
5.0	01	Madarata	10:58	18.0	8.6	32.1	96,3	7.5	2.4
5.0	Cloudy	Moderate	11:06	18.0	8.6	32.0	96.6	7.6	2.7
	Olavidi	Moderate	10:58	18.0	8,6	32.1	96.6	7.6	2.8
5.5	Cloudy	Moderate	11:06	18.0	8.6	32.1	96.7	7.6	2.5
	Olavida	Madarata	10:58	18.0	8.6	32.1	97.1	7.6	2.7
6.0	Cloudy	Moderate	11:06	18.0	8.6	32.0	96.6	7.6	2.4
0.5	Olavela	Moderate	10:59	18.0	8.6	32.1	97.1	7.6	2.7
6.5	Cloudy	Moderate	11:06	18.0	8.6	32.1	96.7	7.6	2.5
7.0	Clourty	Moderate	10:59	18.0	8.6	32.0	97.1	7.6	2.7
7.0	Cloudy	Moderate	11:07	18.0	8.6	32.1	96.7	7.6	2.4
7.6	Cloudy	Moderate	10:59	18.0	8.6	32.1	97.1	7.6	2.5
7.5	Cioddy	Miodelate	11:07	18.0	8.6	32.1	96.8	7.6	2.4
8.0	Cloudy	Moderate	10:59	18.0	8.6	32.1	97.1	7.6	2.4
6.0	Cioday	Modelate	11:07	18.0	8.6	32.1	96.7	7.6	2.3
8.5	Cloudy	Moderate	10:59	18.0	8,6	32.1	97.2	7.6	2.4
6.5	Cioudy	Moderate	11:07	18.0	8.6	32.1	96.8	7.6	2.4
9.0	Cloudy	Moderate	10:59	18.0	8.6	32.1	97.3	7.6	2.3
9.0	Cioudy	Modelate	11:07	18.0	8.6	32.1	96.8	7.6	2.4
0 =	Clouds	Moderate	10:59	18.0	8.6	32.1	97.3	7.6	2.4
9.5	Cloudy	Miodelala	11:08	18.0	8.6	32.1	96.9	7.6	2.4
40.0	Clouds	Moderate	10:59	18.0	8.6	32.1	97.3	7.6	2.8
10.0	Cloudy	Moderate	11:08	18.0	8.6	32.1	96.8	7.6	2.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Tai Wan - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.5m

	•								
10.5	Cloudy	Moderate	11:00	18.0	8.6	32.1	97.5	7.6	2.6
10.5	Cloudy	Moderate	11:08	18.0	8.6	32.1	96.9	7.6	2.3
44.0	Claudin	Madarah	11:00	18.0	8.6	32.1	97.5	7.6	2.5
11.0	Cloudy	Moderate	11:08	18.0	8,6	32.1	96.9	7.6	2.3
	211		11:00	18.0	8.6	32.1	97.4	7.6	2.5
11.5	Cloudy	Moderate	11:08	18.0	8.6	32.1	96.9	7.6	2.4
	01-11-1		11:00	18.0	8.6	32.1	97,4	7.6	2.4
12.0	Cloudy	Moderate	11:08	18.0	8.6	32.1	96.8	7.6	2.4
			11:01	18.0	8.6	32.1	97.4	7.6	2.5
12.5	Cloudy	Moderate	11:08	18.0	8.6	32.1	96.8	7.6	2.4
			11:01	18.0	8.6	32.1	97.5	7.6	2.4
13.0	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.4
			11:01	18.0	8,6	32.1	97.4	7.6	2.5
13.5	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.4
			11:01	18.0	8.6	32.1	97.4	7.6	2.5
14.0	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.6
		1	11:01	18.0	8.6	32.1	97.3	7.6	2.7
14.5	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.5
			11:02	18.0	8.6	32.1	97.4	7.6	2.8
15.0	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.7	7.6	2.4
			11:02	18.0	8.6	32.1	97.3	7.6	2.4
15.5	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.3
4- 4			11:02	18.0	8.6	32.1	97.2	7.6	2.5
16.0	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2,3
			11:02	18.0	8.6	32.1	97.1	7.6	2.9
16.5	Cloudy	Moderate	11:09	18.0	8.6	32.1	96.8	7.6	2.8

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		10:59	18.0	8.6	32.1	97.2	7.6	2.4	
8.5	Cloudy	Moderate	11:07	18.0	8.6	32.1	96.8	7.6	2.4

	Name	Signature	Date
Conducted by:	Lam Ho Chun	bh	8-Feb-13
Checked by:	W.K. Tang	Morai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Cha Kwo Ling - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	Нq	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
0.5	Cloudy	Moderate	9:45	17.9	8.2	31.2	106.2	8.1	1.1
0.9	Cloudy	Modelera	9:50	17.9	8.2	31.3	105.3	8.0	1.1
	Ol4	bio devote	9:45	17.9	8.2	31.2	105.8	8.1	1.3
1.0	Cloudy	Moderate	9;51	17.9	8.2	31.3	104.1	7.9	1.2
			9:45	17.9	8.2	31.3	105.3	8.0	1.0
1.5	Cloudy	Moderate	9:51	17.9	8.2	31.3	104.1	7,9	1.1
			9:46	17.9	8.2	31.3	104.6	8.0	1.0
2.0	Cloudy	Moderate	9:51	17.9	8.2	31.3	103.3	7.9	1.1
			9:46	17.9	8.2	31.3	104.2	7.9	1.1
2.5	Cloudy	Moderate	9:52	17.9	8.2	31.4	103.4	7,9	1.1
			9:46	17.9	8.2	31.3	103.9	7.9	1.3
3.0	Cloudy	Moderate	9:52	17.9	8.2	31.4	103.7	7.9	1.2
			9:46	17.9	8.2	31.3	103.7	7.9	1.4
3.5	Cloudy	Moderate	9:52	17.9	8.2	31.5	102.6	7.8	1.4
			9:47	17.9	8.2	31.4	103.6	7.9	1.4
4.0	Cloudy	Moderate	9:52	17.9	8.2	31.5	102.9	7.8	1.3
			9:47	17.9	8.2	31.4	103.3	7.9	1.3
4.5	Cloudy	Moderate	9:52	17.9	8.2	31.5	102.9	7.8	1.1
			9:47	17.9	8.2	31.4	103.2	7.9	1.3
5.0	Cloudy	Moderate	9:53	17.9	8.2	31.5	102.9	7.8	1.1
			9:47	17.9	8.2	31.4	103.3	7.9	1.2
5.5	Cloudy	Moderate	9:53	17.9	8.2	31.5	102.9	7.8	1.0
——————————————————————————————————————			9;48	17.9	8.2	31.4	103.4	7.9	1.1
6.0	Cloudy	Moderate	9:53	17.9	8.2	31.5	103.0	7.8	1.1
			9:48	17.9	8.2	31.4	103.4	7.9	1.4
6.5	Cloudy	Moderate	9:53	17.9	8.2	31.5	103.0	7.8	1.4
	<u> </u>		9:48	17.9	8.2	31.5	103.4	7.9	1.1
7.0	Cloudy	Moderate	9:54	17.9	8.2	31.5	103.0	7,8	1.1
			9:48	17.9	8.2	31.6	104.1	7.9	1.1
7.5	Cloudy	Moderate	9:54	17.9	8.2	31.5	103.0	7.8	1.0
*****	I		9:48	17.9	8.2	31.5	103.9	7.9	1.1
8.0	Cloudy	Moderate	9:54	17.9	8.2	31.5	103.0	7.8	1.0
			9:49	17.9	8.2	31.6	103.8	7.9	1.1
8.5	Cloudy	Moderate	9:54	17.9	8.2	31.5	103.0	7.8	1.1
		1	9:49	17.9	8.2	31.6	103.2	7.9	1.2
9.0	Cloudy	Moderate	9:55	17.9	8.2	31.5	102.9	7.8	1.0
			9:49	17.9	8.2	31.6	103.4	7.9	1.1
9.5	Cloudy	Moderate	9:55	17.9	8.2	31.5	102.9	7.8	1.0
			9:49	18.0	8.2	31.6	103.4	7.9	1.6
10.0	Cloudy	Moderate	9:55	17.9	8.2	31.6	103.4	7.9	1.5

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Cha Kwo Ling - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 1.5m

			9:50	18.0	8.2	31.6	103.4	7.9	1.5
10.5	Cloudy	Moderate	9:55	17.9	8.2	31.6	103.4	7.9	1.5
			9:50	18.0	8.2	31.6	103.3	7.9	1.7
11.0	Cloudy	Moderate	9:56	17.9	8.2	31.6	103.3	7.9	1.6
			9;50	18.0	8.2	31.7	103.3	7.9	1.8
11.5	Cloudy	Moderate	9:56	17.9	8.2	31.7	103.3	7.9	1.7

Water	Weather	Sea	Sampling	Water	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen	Turbidity (NTU)
Depth (m)	Condition	Condition*	Time	Temperature (°C)				(mg/L)	
	01	Moderate	9:48	17.9	8.2	31.4	103.4	7.9	1.1
6.0	Cloudy	Moderate	9:53	17.9	8.2	31.5	103.0	7.8	1.1

	Name	Signature	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Quarry Bay - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	011.	Madazata	11:51	17.9	8.6	32.0	97.7	7.6	3.1
0.5	Cloudy	Moderate	11:55	18.0	8.6	32.0	94.9	7.4	2.9
			11:52	18.0	8,6	32.0	95.7	7.5	3.0
1.0	Cloudy	Moderate	11:56	18.0	8.6	32.1	94.8	7.4	3.1
			11:52	18.0	8.6	32.0	94.6	7.4	2.8
1.5	Cloudy	Moderate	11:56	18.0	8.6	32.1	94.9	7.4	3.1
			11:52	18.0	8.6	32.1	94.6	7.4	2.8
2.0	Cloudy	Moderate	11:56	18.0	8.6	32.1	94.6	7.4	2.9
			11:52	18.0	8.6	32.1	94.5	7.4	2.9
2.5	Cloudy	Moderate	11:56	18.0	8.6	32.0	94.9	7.4	2.9
			11:52	18.0	8.6	32.0	94,5	7.4	2.9
3.0	Cloudy	Moderate	11:56	18.0	8.6	32.1	94.8	7.4	2.9
			11:52	18.0	8.6	32.1	94.5	7.4	3.1
3.5	Cloudy	. Moderate	11:57	18.0	8.6	32.1	94.7	7,4	2.8
			11:53	18.0	8.6	32.1	94.5	7.4	3.2
4.0	Cloudy	Moderate	11:57	18.0	8.6	32.1	94.7	7.4	2.8
			11:53	18.0	8.6	32.1	94.6	7.4	3.0
4.5	Cloudy	Moderate	11:57	18.0	8.6	32.1	95.3	7.5	2.7
			11:53	18.0	8,6	32.1	94.8	7.4	3.0
5.0	Cloudy	Moderate	11:57	18.0	8.6	32.1	94.9	7.4	2.7
			11:53	18.0	8.6	32.1	94.9	7.4	2.8
5.5	Cloudy	Moderate	11:57	18.0	8.6	32.1	95.2	7.4	2.7
			11:53	18,0	8,6	32.1	95.2	7.4	2.8
6.0	Cloudy	Moderate	11:57	18.0	8.6	32.1	95.0	7.4	2.7
	<u> </u>		11:53	18.0	8.6	32.1	95.1	7.4	2.7
6.5	Cloudy	Moderate	11:57	18.0	8.6	32.1	95.0	7.4	2.7
			11:54	18.0	8,6	32.1	95.1	7.4	2.7
7.0	Cloudy	Moderate	11:58	18.0	8.6	32.1	95.2	7.4	2.7
			11:54	18.0	8.6	32.1	95.1	7.4	2.7
7.5	Cloudy	Moderate	11:58	18.0	8.6	32.1	95.1	7.4	2.7
			11:54	18.0	8.6	32.1	95.3	7.5	2.7
8.0	Cloudy	Moderate	11:58	18.0	8.6	32.1	95.2	7.4	2.7
			11:54	18.0	8.6	32.1	95.3	7.5	2.7
8.5	Cloudy	Moderate	11:58	18.0	8.6	32.1	95.3	7.5	2.8
	1		11:54	18.0	8.6	32.1	95.3	7.5	2.8
9.0	Cloudy	Moderate	11:58	18.0	8.6	32.1	95.1	7.4	2.8
<u> </u>		<u> </u>	11:54	18.0	8.6	32.1	95.3	7.5	2.8
9.5	Cloudy	Moderate	11:59	18.0	8.6	32.1	95.1	7.4	3.1
		1	11:54	18.0	8.6	32.1	95.3	7.5	2.9
10.0	Cloudy	Moderate	11:59	18.0	8.6	32.1	95.0	7.4	3.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Quarry Bay - Mid-Ebb Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

40.5	Claude	Moderate	11:55	18.0	8.6	32.1	95.2	7.4	2.8
10.5	Cloudy	Widdelate	11:59	18.0	8.6	32.1	95.0	7.4	2.7
440	0:	11-1-1-	11:55	18.0	8.6	32.1	95.2	7.4	3.5
11.0	Cloudy	Moderate	11:59	18,0	8.6	32.1	94.9	7.4	3.9
	011		11:55	18.0	8.6	32.1	95.2	7.4	2.8
11.5	Cloudy	Moderate	11:59	18.0	8.6	32.1	95.1	7.4	2.8

	Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
İ	, , , , , , , , , , , , , , , , , , , ,			11:53	18.0	8.6	32.1	95.2	7.4	2.8
	6.0	Cloudy	Moderate	11:57	18.0	8.6	32.1	95.0	7.4	2.7

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Sai Wan Ho - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NT
			12:34	18.0	8.6	32.1	98.0	7.7	2.9
0.5	Cloudy	Moderate	12:38	18.0	8.6	32.1	97.8	7.6	2.9
	21		12:34	18.0	8.6	32.1	97.2	7.6	3.0
1.0	Cloudy	Moderate	12:38	18.0	8.6	32.1	96.8	7.6	2.9
	<u>.</u>		12:34	18.0	8.6	32.1	97.3	7.6	2.9
1.5	Cloudy	Moderate	12:38	18.0	8,6	32.2	97.3	7.6	2.9
			12:34	18.1	8.6	32.1	97.9	7.6	2.8
2.0	Cloudy	Moderate	12:38	18.1	8.6	32.1	97.9	7.6	2.8
	<u> </u>		12:35	18.0	8.6	32.1	95.9	7.5	2.8
2.5	Cloudy	Moderate	12:38	18.0	8.6	32.1	96.2	7.5	2.8
			12:35	18.0	8.6	32.2	95.7	7.5	2.8
3,0	Cloudy	Moderate	12:38	18.0	8.6	32.2	95.7	7.5	2.8
			12:35	18.0	8.6	32.1	95.6	7.5	2.8
3.5	Cloudy	Moderate	12:38	18.0	8.6	32.1	95.7	7.5	2.8
			12:35	18.0	8.6	32.2	95.5	7.5	2.9
4.0	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.4	7.5	2.9
			12:35	18.0	8.6	32.1	95.6	7.5	2.9
4.5	Cloudy	Moderate	12:39	18.0	8,6	32.1	95.4	7.5	3,0
			12:35	18.0	8.6	32.2	95.4	7.5	2.9
5.0	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.4	7.5	2.9
			12:35	18.0	8,6	32.1	95.3	7.4	3.1
5.5	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.3	7.4	3.1
			12:36	18.0	8.6	32.2	95.2	7.4	2.8
6.0	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.3	7.4	2.7
			12:36	18.0	8.6	32.1	95.1	7.4	3.0
6.5	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.2	7.4	3.4
			12:36	18.0	8.6	32.1	95.1	7.4	2.9
7.0	Cloudy	Moderate	12:39	18.0	8.6	32.2	95.2	7.4	2.7
			12:36	18.0	8.6	32.1	95.2	7.4	2.7
7.5	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.2	7.4	2.7
	•		12:36	18.0	8.6	32.1	95.1	7.4	2.7
8.0	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.0	7.4	2.7
			12:37	18.0	8.6	32.1	95.0	7.4	2.7
8.5	Cloudy	Moderate	12:40	18.0	8.6	32.1	95.1	7.4	2.7
****			12:37	18.0	8.6	32.2	94.9	7.4	2.8
9.0	Cloudy	Moderate	12:40	18.0	8.6	32.1	94.9	7.4	2.9
	1		12:37	18.0	8.6	32.1	94.9	7.4	2.9
9.5	Cloudy	Moderate	12:40	18.0	8.6	32.1	94.8	7.4	2.9
			12:37	18.0	8.6	32.2	94.9	7.4	2.9
10.0	Cloudy	Moderate	12:40	18.0	8.6	32.1	94.9	7,4	2.8

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Sai Wan Ho - Mid-Ebb Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

10.5 Cloudy	<u> </u>		12:37	18.0	8.6	32.1	94.9	7.4	2.9
	Moderate	12:40	18.0	8.6	32.1	94.9	7.4	2.9	
			12:37	18.0	8.6	32.1	94.9	7.4	2.8
11.0	Cloudy	Moderate	12:40	18.0	8.6	32.2	94.9	7.4	2.8
		Cloudy Moderate	12:37	18.0	8.6	32.1	94.9	7.4	3.0
11.5 Cloud	Cloudy		12:40	18.0	8.6	32.1	94.9	7.4	2.8

Water Depth (m)	Wealher Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	A. 1		12:36	18.0	8.6	32.2	95.2	7.4	2.8
6.0	Cloudy	Moderate	12:39	18.0	8.6	32.1	95.3	7.4	2.7

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Kwa	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC1 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pH	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:12	22.4	7.3	14.1	65.2	5.0	3.9
0.5	Cloudy	Moderate	15:16	22.1	7.3	15.4	68.4	5.2	4.0
	011-	11	15:12	21.0	7.5	19.5	70.4	5.4	2.2
1.0	Cloudy	Moderate	15:16	21.2	7.5	17.9	70.0	5.3	2.2
	0	16.1	15:13	19.7	7.7	27.6	67.6	5.1	1.4
1.5	Cloudy	Moderate	15:17	19.8	7.7	27.2	67,4	5.1	1.2
			15:13	18.8	7,7	30.4	59.7	4.5	1.0
2.0	Cloudy	Moderate	15:17	18.8	7.7	30.3	59.0	4.5	0.9
			15:13	18.6	7.7	30.7	51.5	3.9	1.6
2.5	Cloudy	Moderate	15:17	18.6	7.7	30.7	50.7	3.9	1.6
			15:14	18.6	7,7	30.8	47.0	3.6	2.0
3.0	Cloudy	Moderate	15:18	18.6	7.7	30.8	46.3	3.5	2.0
			15:14	18,5	7.7	30.8	44.9	3.4	2.2
3.5	Cloudy	Moderate	15:18	18.5	7.7	30.8	45.2	3.4	2.3
	a		15:14	18.5	7.7	30.8	45.8	3.5	2.6
4.0	4.0 Cloudy	Moderate	15:18	18.5	7.7	30,8	46.7	3.6	2.7
4.5	011		15:14	18.5	7.7	30.8	46.9	3.6	2.8
4.5	Cloudy	Moderate	15:18	18.5	7.7	30.8	46,7	3.6	2.5

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:12	21.0	7.5	19.5	70.4	5.4	2.2
1.0	Cloudy	Moderate	15:16	21.2	7.5	17.9	70.0	5.3	2.2
		Cloudy Moderate	15:14	18.5	7.7	30.8	45.8	3.5	2.6
4.0 Clou	Cloudy		15:18	18.5	7.7	30.8	46.7	3.6	2.7

	Name	Signature	Date
Conducted by:	Law Chun Hong	277	8-Feb-13
Checked by:	W.K. Tang	Muzi	8-Feb-13

– Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC2 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:02	20.6	7.5	21.2	75.5	5.7	2.4
0.5	Cloudy	Moderate	15:06	21.3	7.5	20.8	72,8	5.5	2.4
1.0	01	Moderate	15:02	20.5	7.5	19.6	68.6	5.2	2.5
1.0	Cloudy	Moderate	15:06	22.0	7.5	18.1	65.2	5,0	2.6
4.5	01	Moderate	15:02	20.8	7.6	20.3	58.8	4.5	2.1
1.5	Cloudy	Moderate	15:06	20.3	7.5	21.0	59.7	4.5	2.1
	Claudia	Moderate	15:02	19.6	7.6	26.7	56.8	4.3	2.0
2.0	Cloudy Mode	Modelste	15:06	19.8	7.6	25.2	55.6	4.2	2.0
0.5	Q14	Moderate	15:03	18.6	7.7	30.7	48.8	3.7	1.8
2.5	Cloudy	Moderate	15:07	18.6	7.7	30.6	48.2	3.7	1.9
	01	11-1-1-	15:03	18,5	7.7	30.8	45,6	3.5	2,0
3.0	Cloudy	Moderate	15:07	18.6	7.7	30.7	46.3	3.5	1.9
3.5	01	Moderate	15;03	18.5	7.7	30.8	45.7	3,5	2.1
3.5	Cloudy	Moderate	15:07	18.5	7.7	30.8	46.6	3.5	2.1
	01		15:04	18.5	7.7	30.8	51.5	3.9	6.4
4,0	4.0 Cloudy	Moderate	15:08	18.5	7.7	30.8	51.4	3.9	6.6
4.5	011	Cloudy Moderate -	15:04	18.5	7.7	30,8	49.8	3.8	6.8
4.5	Cloudy		15:08	18,5	7.6	30.8	49.3	3.8	7.4

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	01		15:02	20.5	7.5	19.6	68.6	5.2	2.5
1.0	Cloudy	Moderate	15:06	22.0	7.5	18.1	65.2	5.0	2.6
4.5	Olassala.	Cloudy Moderate	15:04	18.5	7.7	30.8	51.5	3.9	6.4
4.0 Cl	Cloudy		15:08	18.5	7.7	30.8	51.4	3.9	6.6

	Name	Signature	Date
Conducted by:	Law Chun Hong	271	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC3 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:38	21.1	7.2	14.0	59.4	4.5	2.3
0.5	Cloudy	Moderate	15:42	21.2	7.2	13.9	54.8	4.2	2.3
		budy Moderate	15:38	18.9	7.7	26,0	55.3	4.2	1.9
1.0	Cloudy		15:42	19.4	7.7	21.2	57.3	4.4	1.9
	014.	Madada	15:38	19,5	7.6	25.1	57.3	4.4	1.9
1.5	Cloudy	Moderate	15:43	19.4	7,6	24.0	58.8	4.5	1.9
		11.	15:39	19.2	7.7	27.8	57.5	4.4	1.8
2.0	Cloudy	Moderate	15:43	18.8	7.7	29.3	57.7	4.4	1.8
	0:1	11-2	15:39	18.6	7.8	30.0	62.6	4.8	1.7
2.5	Cloudy	Moderate	15:43	18.6	7.8	30.4	63.1	4.8	1.7
			15:39	18.4	7.9	30.8	64.6	4.9	1.8
3.0	Cloudy	Moderate	15:43	18.5	7.9	30.7	65.2	5.0	1.7
			15:40	18.4	7.9	30.8	71.6	5.6	1.8
3.5	Cloudy	Moderate	15:44	18.5	7.9	30.7	70.9	5.4	1.7
			15:40	18.3	8,0	30.9	75.5	5.8	2.0
4.0	Cloudy	Moderate	15:44	18.3	8.0	30.9	76.2	5.8	2.0
	<u> </u>		15:40	18.3	8.0	30.9	80.4	6.1	4.1
4.5	Cloudy	Moderate	15:44	18.3	8.0	30.9	80,0	6.1	4.0
			15;40	18.2	8.0	31,2	80.7	6.1	4.7
5.0	Cloudy	Moderate	15:44	18.2	7.9	32.1	81,1	6.2	4.8

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Öxygen (mg/L)	Turbidity (NTU)
		15:38	18.9	7.7	26.0	55,3	4.2	1.9	
1.0	Cloudy Moderate	Moderate	15:42	19.4	7.7	21.2	57.3	4.4	1.9
		15:40	18.3	8.0	30.9	80.4	6.1	4.1	
4.5	Cloudy	Moderate	15:44	18.3	8.0	30.9	80.0	6.1	4.0

	Name	Signature	Date
Conducted by:	Law Chun Hong	m	8-Feb-13
Checked by:	W.K. Tang	Vivai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC4 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbldity (NTU)
			15:26	21.2	7.5	15.7	71.6	5.5	2.9
0.5	Cloudy	Moderate	15:30	21.4	7.4	15.1	69.2	5.3	2.7
4.0	01	Cloudy Moderate	15:26	20.1	7.5	16.8	66.3	5.1	2.1
1.0	Cloudy		15:31	20.2	7.6	16.3	69.1	5.3	2.1
	AlI	14	15:26	19.8	7.6	27.7	66.7	5.1	3.1
1.5	Cloudy	Moderate	15:31	19.8	7.6	30.0	66.8	5.1	3,0
			15:26	19.0	7.8	30.1	65.4	5.0	2.2
2.0	Cloudy	Moderate	15:31	19.0	7.8	30.3	65.6	5.0	2.4
	0		15:27	18.5	7.8	30.4	65,3	5.0	2.0
2.5	Cloudy	Moderate	15:31	18.6	7.8	30.2	65.6	5.0	1.9
	011	Moderate	15:27	18.5	7.8	30.6	64.1	4.9	1.8
3.0	Cloudy	Moderate	15:32	18.5	7.8	30.7	63.9	4.9	1.9
	A	14-4	15:27	18.4	7.9	30.8	66.2	5.0	2.2
3.5	Cloudy	Moderate	15:32	18.4	7.9	30.8	67.9	5.2	2.7
			15:28	18.3	7.9	30.9	73.3	5.6	2.2
4.0	Cloudy	Moderate	15:32	18,3	8.0	30.9	73.5	5.6	2.2
4.5	A1	15-2	15:28	18.3	8.0	30,9	77.7	5.9	2.7
4.5	Cloudy	Moderate	15:32	18.3	8.0	30,9	77.7	5.9	2.9
			15:28	18.2	8.0	33.5	80.2	6.1	3,8
5.0	Cloudy	Moderate	15:33	18.2	8.0	32.9	79.7	6.1	3.8

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turb!dity (NTU)
	1.0 Cloudy Moderate	15:26	20.1	7.5	16.8	66.3	5.1	· 2.1	
1.0		Moderate	15:31	20.2	7.6	16.3	69.1	5.3	2.1
		Cloudy Moderate	15:28	18.3	8.0	30.9	77.7	5.9	2.7
4,5	Cloudy		15:32	18.3	8,0	30.9	77.7	5.9	2.9

	Name	Signature	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Karai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC5 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Satinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:13	19.6	7.6	17.8	58.1	4.3	5.7
0.5	Cloudy	Moderate	16;18	20.1	7.4	18.7	54.2	4.1	5.7
4.0	Olevato	Nada-t-	16:14	19.6	7.5	23.0	44.4	3.4	4.9
1.0	Cloudy	Moderate	16:18	20.1	7.3	19.1	41.3	3.1	5.4
1.5	Cloudy	Moderate	16:14	19.3	7.7	23.3	53.1	4.0	3.0
1.5	Cioday	Niodelata	16:18	19.1	7.8	28.3	55.9	4.3	2.6
	0	Moderate	16:14	18.9	7.9	26.9	71.5	5.4	2.1
2.0	Cloudy	Moderate	16:18	19.0	7.8	26.3	71.4	5.4	2.3
A.F.	A)1	Moderate	16:15	18.5	8.0	30.4	73,7	5.6	1.5
2.5	Cloudy	Moderate	16:19	18.4	8.0	30.5	74.9	5.7	1.4
4.5	0	Moderate	16:15	18.6	8.0	30.2	81.3	6.2	1.4
3.0	Cloudy	Moderate	16:19	18,6	8.0	30,7	83.0	6.3	1.2
		Madausta	16:15	18.5	8.0	30.8	86.0	6.6	1.2
3.5	Cloudy	Moderate	16:19	18.5	8.0	30.7	85.8	6.5	1.3
	0		16:16	18.4	7.9	29,9	85.6	6.5	1.5
4.0	Cloudy	Moderate	16:19	18.4	8.0	30.6	81.0	6.2	1.3
	<u> </u>	Moderate	16:16	18.4	8.0	30.6	82.6	6.3	1.2
4.5	Cloudy	Moderate	16:20	18.3	8.0	30.9	88.0	6.7	1.3
5.0	01	Madazata	16:16	18.3	8.0	30.8	87.9	6.7	1.3
5.0	Cloudy	Moderate	16:20	18.2	8.1	30.9	89.9	6.8	1.4
	011	Madaal-	16:16	18.2	8.1	30.9	89.5	6.8	1.3
5.5	Cloudy	Moderate	16:20	18.2	8.1	31.0	90.7	6.9	1.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		14. 1 1	16:14	19.6	7.5	23.0	44.4	3.4	4.9
1.0	Cloudy	Moderate	16:18	20.1	7.3	19.1	41.3	3.1	5.4
			16:15	18.6	8.0	30.2	81.3	6.2	1.4
3.0	Cloudy	Moderate	16:19	18.6	8.0	30.7	83.0	6.3	1.2
			16:16	18.3	8.0	30.8	87.9	6.7	1.3
5.0	Cloudy	Moderate	16:20	18.2	8.1	30.9	89.9	6.8	1.4

	Name	Signatyre	Date
Conducted by:	Law Chun Hong	2/1	8-Feb-13
Checked by:	W.K. Tang	Mvai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC6 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	AL. 1.		16:01	19.0	7.7	16.9	46.0	3.5	3.1
0.5	Cloudy	Moderate	16:06	20.2	7.4	16.0	54.2	4.1	3.2
1.0	Cloudy	Moderate	16;02	19.8	7.4	20.5	48.7	3.7	3.7
1.0	Cloudy	Moderate	16:06	19.8	7.4	20.3	48.3	3.7	3.6
1.5	Cloudy	Moderate	16:02	18.8	7.8	28.7	46.1	3.5	3.0
1.5	Cloudy	Moderate	16:06	18,8	7.9	27.8	50.9	3.9	3.0
2.0	Cloudy	Moderate	16:02	18.7	7.8	26,0	60.5	4.6	3.0
2.0	Cioddy	Moderate	16:06	18.7	7.8	29.5	61.7	4.7	2.7
2.5	Cloudy	Moderate	16:02	18.5	7.9	30.4	71.1	5.4	1.5
2.5	Cloddy	Moderate	16:07	18.4	7.9	30.6	72.9	5.5	1.5
3.0	Cloudy	Moderate	16:03	18,5	7.9	30.6	75.6	5.8	1.3
3.0	Cloudy	Moderate	16:07	18.4	8.0	30.7	75.8	5.8	1.2
3.5	Cloudy	Madazala	16:03	18.4	8.0	30.7	78.6	6.0	1.5
3.5	Cloudy	Moderate	16:07	18.3	8.0	30.8	79.5	6.1	1.4
	Cloudy	Moderate	16:03	18.3	8.0	30.9	85.5	6.5	1.5
4.0	Cioudy	Moderate	16:08	18.2	8.0	30.9	85.7	6.5	1.4
	Ola d.	Moderate	16:04	18.3	8.0	30.9	81.5	6.2	1.6
4.5	Cloudy	Wodelate	16:08	18.2	8.1	30.9	82.9	6.3	1.7
5.0	Claudy	Moderate	16:04	18.2	8.1	31.0	88.6	6.7	1.9
5.0	Cloudy	Wodelate	16:08	18.2	8.1	31,0	89.9	6.8	2.0
	A		16:04	18.2	8.1	31.2	89.4	6.8	2.4
5.5	Cloudy	Moderate	16:08	18.2	8.1	31.2	90.5	6.9	2.1

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:02	19.8	7.4	20.5	48.7	3.7	3.7
1.0	Cloudy	Moderate	16:06	19.8	7.4	20.3	48.3	3.7	3.6
		44-4	16:03	18.5	7.9	30.6	75.6	5.8	1.3
3.0	Cloudy	Moderate	16:07	18.4	8.0	30.7	75.8	5.8	1.2
-	0		16:04	18.2	8.1	31.0	88.6	6.7	1.9
5.0	Cloudy	Moderate	16:08	18.2	8.1	31.0	89.9	6.8	2.0

	Name	Signature	Date
Conducted by:	Law Chun Hong	An An	8-Feb-13
Checked by:	W.K. Tang	Kwa:	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at AC7 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	A		18:27	19.7	7.6	16.3	56.4	4.3	3.2
0.5	Cloudy	Moderate	16:32	20.2	7.3	16.2	57.0	4.3	3.4
			16:28	20.1	7.4	16.9	46.7	3.6	3.2
1.0	Cloudy	Moderate	16;32	19.8	7.4	16.4	44.1	3.4	3.2
4.5	01		16:28	19.0	7.9	24.9	64.9	4.9	1.6
1.5	Cloudy	Moderate	16:32	19.0	7.9	25.0	66.6	5.1	1.8
	AL. L		16:28	18.6	8.0	30.3	68.3	5.2	1.4
2.0	Cloudy	Moderate	16:32	18.7	8.0	29.2	68.7	5.2	1,5
	0:1		16:28	18.7	8.0	29.1	80.1	6.1	1.3
2.5	Cloudy	Moderate	16:33	18.7	7.9	29.1	79.3	6.0	1.5
	Oleved v		16:29	18.4	8.0	30.7	78,3	6.0	1.3
3.0	Cloudy	Moderate	16:33	18.4	8.0	30.7	82.1	6.3	1.2
	011		16:29	18.4	8.0	30.7	86.2	6.6	1.1
3.5	Cloudy	Moderate	16:33	18.4	8.0	30.7	8 6.9	6.6	1.1
	0		16:29	18.3	8.0	30.8	88.2	6.7	1.2
4.0	Cloudy	Moderate	16:34	18.3	8.0	30,8	88.3	6.7	1.2
4.5	0	***	16:29	18.4	8.0	30,7	88.2	6.7	1.2
4.5	Cloudy	Moderate	16:34	18.3	8.1	30.9	88.2	6.7	1.2
	A		16:30	18.3	8.1	30.8	88.7	6.8	1.1
5.0	Cloudy	Moderate	16:34	18.2	8.1	30.9	89.2	6.8	1.2
	0 11		16:30	18.2	8.1	30.9	89.1	6.8	1.5
5.5	Cloudy	Moderate	16:34	18.2	8.1	30.9	91.0	6.9	1,6
	A		16:30	18.2	8.1	30.9	91.4	7.0	1.6
6.0	Cloudy	Moderate	16:35	18.2	8.1	31.0	91.7	7.0	1.7

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity pot	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:28	20.1	7.4	16.9	46.7	3.6	3.2
1,0	Cloudy	Moderate	16:32	19.8	7.4	16.4	44.1	3.4	3.2
			16:29	18.4	8.0	30.7	84,9	6.5	1.1
3.25	Cloudy	Moderate	16:33	18.4	8.0	30.8	85.8	6.5	1.1
		17. 1	16:30	18.2	8.1	30.9	89.1	6.8	1.5
5.5	Cloudy	Moderate	16:34	18.2	8.1	30,9	91.0	6.9	1.6

	Name	Signature	Date
Conducted by:	Law Chun Hong	Ar	8-Feb-13
Checked by:	W.K. Tang	MNA	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB1 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			17:46	18.3	8.4	31.5	79.4	62	4.5
0.5	Cloudy	Moderate	17:48	18.3	8.4	31.5	79.9	6.2	4.6
			17:46	18.3	8.4	31.4	79.3	6.2	4.7
1.0	Cloudy	Moderate	17:48	18.3	8.4	31.4	79.5	6.2	4.7
			17:46	18.3	8.4	31.5	79.8	6.2	4.8
1.5	Cloudy	Moderate	17:48	18.3	8.4	31.5	79.8	6.2	4.8
			17:47	18.3	8.4	31.5	79.9	6.2	4.8
2.0	Cloudy	Moderate	17:48	18.3	8.4	31.5	0,08	6.2	4,8
			17:47	18.3	8.4	31.4	80.4	6.3	4.9
2.5	Cloudy	Moderate	17:49	18.3	8,4	31.5	80.2	6.3	4.9
			17:47	18.3	8.4	31.5	81.0	6.3	4.7
3.0	Cloudy	Moderate	17:49	18.3	8.4	31.5	81.1	6.3	4.7
			17:47	18.3	8.4	31.5	81,6	6.4	4.2
3.5	Cloudy	Moderate	17:49	18.3	8.4	31.5	81.4	6.4	4.3
			17:47	18.3	8.4	31.5	82.5	6.4	4.3
4.0	Cloudy	Moderate	17:49	18.3	8.5	31.5	83.2	··· 6.5	4.2
			17:47	18.3	8.5	31.6	84.0	6.6	4.1
4.5	Cloudy	Moderate	17;49	18.3	8.5	31.5	83.6	6.5	4.1
***************************************			17:47	18,3	8.5	31.5	84.3	6.6	4.1
5.0	Cloudy	Moderate	17:49	18.2	8.5	31.6	84.4	6.6	4.1
			17:48	18.2	8.5	31.6	85.2	6.7	4.5
5.5	Cloudy	Moderate	17:49	18.2	8.5	31,6	85.0	6.6	4.3
			17:48	18.2	8.5	31.6	85.7	6.7	4.4
6.0	Cloudy	Moderate	17:50	18.2	8.5	31.6	85.8	6.7	4.4
			17:48	18.2	8.5	31.6	85.5	6.7	13.8
6.5	Cloudy	Moderate	17:50	18.2	8.5	31.7	85.5	6.7	13.1

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			17:46	18.3	8.4	31.4	79.3	6.2	4.7
1.0	Cloudy	Moderate	17:48	18.3	8.4	31.4	79.5	6.2	4.7
		** .	17:47	18.3	8.4	31.5	81.6	6.4	4.2
3.5	Cloudy	Moderate	17:49	18.3	8.4	31.5	81.4	6.4	4.3
			17:48	18.2	8.5	31.6	85.7	6.7	4.4
6.0	Cloudy	Moderate	17:50	18.2	8.5	31.6	85.8	6.7	4.4

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Wwa:	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB2 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Samp§ng Time	Water Temperature (°C)	рΗ	Safinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			17:27	18.3	8.4	31.1	84.8	6.6	39
0.5	Cloudy	Moderate	17:30	18.3	8 4	31.1	88.5	6.8	4.0
			17:27	18.3	8.4	31.1	82.3	6.4	3.6
1.0	Cloudy	Moderate	17:30	18.3	8.4	31 2	81.4	6.4	3.8
			17:28	18.3	8.4	31.2	79.6	62	4.0
1.5	Cloudy	Moderate	17:30	18.3	8.4	31.2	79.8	6.2	3.8
			17:28	18.3	8.4	31.3	79.1	6.2	3.7
20	Cloudy	Moderate	17:30	18.3	8.4	31.3	79.2	6.2	3.7
			17:28	18.3	6.5	31.5	80.5	6.3	3.2
25	Cloudy	Moderate	17:31	18.3	8.5	31.5	60.3	6.3	3 2
			17:28	18 2	8.5	31.5	81.5	6.4	3.2
3.0	Cloudy	Moderate	17:31	18.2	8.5	31.5	81.7	6.4	3.0
			17:28	18.2	8.5	31.6	83.3	6.5	2.8
3.5	Cloudy	Moderate	17:31	18.2	8.5	31.6	83.1	6.5	2.8
			17:28	18.2	8.5	31.6	\$3.6	6.5	3.2
4.0	Cloudy	Moderate	17:31	18.2	8.5	31.6	83.7	6.5	3.1
			17:29	18.2	8.5	31.7	84.3	6.8	2.8
4.5	Cloudy	Moderate	17:31	18 2	8.5	31,6	84.0	6.6	28
			17:29	18.2	8.5	31.6	84.9	6.6	28
5.0	Cloudy	Moderate	17:32	18.2	8.6	31.6	65 2	6.7	2.8
			17:29	18 2	8.5	31.6	86.1	6.7	2.5
6.5	Cloudy	Moderate	17:32	18.2	8.5	31.6	85.8	6.7	26
			17:29	18.2	8.6	31.7	87.0	6.8	2.5
6.0	Cloudy	Moderate	17:32	18.2	8.5	31.6	87.4	6.8	2.5
			17:29	18.1	8.5	31.7	88.3	6.9	3.0
6.5	Cloudy	Moderate	17:32	18.1	8.5	31.7	88.4	6.9	3.1
			17:29	18.1	8.5	31.6	68 2	6.9	3.3
7.0	Cloudy	Moderate	17:32	18.1	8.5	31.7	88.2	6.9	3.4
	<u> </u>		17:30	18.1	8.5	31.6	87.8	6.9	4.7
7.5	Cloudy	Moderate	17:32	18.1	8.5	31.7	63.1	6.9	4.3
			17:30	18.1	8.5	31.8	87.4	6.8	7.9
8.0	Cloudy	Moderate	17:32	18.1	8.5	31.8	87.0	6.8	7.9
			17:30	18.0	8.5	31.9	85.3	6.7	7.4
8.5	Cloudy	Moderate	17:32	18.0	8.5	31.8	85.4	6.7	7.4

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рH	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		44 1	17:27	18.3	8.4	31.1	82.3	5.4	3.8
1.0	Cloudy	Moderate	17:30	18.3	8.4	31.2	81.4	6.4	3.8
			17:29	18 2	8.5	31.7	84.3	6.6	28
4.5	Cloudy	Moderate	17:31	18.2	8.5	31.6	84.0	6.6	28
		**	17:30	18.1	8.5	31.8	87.4	6.8	7.9
8.0	Cloudy	Moderate	17:32	18.1	8.5	31.8	87.0	6.8	7.9

	Name	Signature	Date
Conducted by:	Lam Ho Chun	bh	8-Feb-13
Checked by:	W.K. Tang	Mwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at IB3 - MId-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pH	Satnity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTL
			16.50	183	8.4	31.3	87.8	6.9	4.1
05	Cloudy	Moderata	16.53	18.2	8.4	31.3	90.4	7.1	4.8
			16:50	18.3	8.4	31.3	87.3	68	4.0
1.0	Cloudy	Moderate	16:53	18.3	8.4	31.2	86.0	67	3.9
			16.51	18.3	8.4	31.4	823	6.4	3.6
1.5	Cloudy	Moderate	16 54	18.3	8.4	31,4	82.8	6.5	3.7
			16.51	183	8.5	31.5	81.6	6.4	32
20	Cloudy	Moderate	16.54	183	8.5	31.5	82.1	6.4	3.2
			16:51	182	8.5	31.5	82.8	6.6	3.1
2.5	Cloudy	Moderate	16:54	18.2	8.5	31.5	82.7	65	3.3
			16:51	18.2	8.5	31.6	84.6	66	3.0
30	Cloudy	Moderate	16:54	18.2	8.5	31.6	84.8	66	2.9
			16:51	18.2	8.5	31.6	65.1	66	2.8
3.5	Cloudy	Moderate	16.54	18.2	8.5	31.6	85.0	8.6	28
			16.51	18.2	85	31,6	85.2	6.7	27
4.0	Cloudy	Moderate	16.54	18.2	8.5	31,6	85.2	6.7	2.7
			16.52	18.2	8.5	31,6	85.9	6.7	29
4.5	Cloudy	Moderate	16.55	182	85	31.7	85.6	6.7	2.7
			16.52	18.2	8.5	31.7	85.8	6.7	2.7
5.0	Cloudy	Moderate	16.55	18.2	8.5	31.7	86.1	6.7	2.7
			16.52	18.2	8.5	31.7	88 0	6.7	27
6.5	Cloudy	Moderate	16.55	18.2	8.5	31.7	859	6.7	27
			16.52	18.2	8.5	31.7	88.5	6.8	2.6
6.0	Cloudy	Moderate	16.55	18.2	8.5	31.6	88.7	6.8	2.5
			16:52	18.2	8.5	31.6	87.0	6.6	26
6.5	Cloudy	Moderate	16:55	18.2	8.5	31.6	86.9	6.8	2.6
		4	16.52	18.2	8.5	31.6	87.2	6.8	3.5
7.0	Cloudy	Moderate	16:55	18.2	8.5	31.7	87.2	6.8	3.9
			16.53	18.1	8.5	31.8	85.8	6.7	5.6
7.5	Cloudy	Moderate	16.55	18,1	8.5	31.8	66.5	6.8	5.5
		14	16:53	18.1	8.5	31.8	85.2	6.7	5.6
80	Cloudy	Moderate	16:55	18.0	8.5	31.9	84.8	66	5.4
	<u> </u>		16:53	18.0	8.6	31.9	85.8	67	5.2
85	Cloudy	Moderate	16:56	18.0	8.6	31.9	85.4	6.7	5.3
			16.53	18.0	8.6	32.0	86.6	6.8	11.1
9.0	Cloudy	Moderate	16:56	18.0	8.6	32.0	87.0	68	11.4

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:50	183	8.4	31.3	87.3	6.8	4.0
1.0	Cloudy	Moderate	16:53	18.3	8.4	31.2	68.0	6.7	3.9
			16:56	18.2	8.5	31.6	87.0	6.8	3.2
4.75	Cloudy	Moderate	16:56	18.2	8.5	31.6	88.4	6.7	3.1
			16:53	18.0	8.6	31.9	85.8	6.7	5.2
85	Cloudy	Moderate	16:56	18.0	86	31.9	85.4	6.7	5.3

	Name	Signature	Date
Conducted by:	Lam Ho Chun	th	8-Feb-13
Checked by:	W.K. Tang	Kna'	8-Feb-13

Contract No. KL/2010/02

Kai Tak Development

– Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at OB1 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Samp@ng Time	Water Temperature (°C)	рН	Sa≦nity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			17:09	18,3	8.4	31.5	94.4	7,4	2.8
0.5	Cloudy	Moderate	17:13	18.3	8.4	31.5	86.4	6.7	2.7
			17:10	18,3	8.4	31.6	90.5	7.1	3.2
1.0	Cloudy	Moderate	17:13	18.3	8.4	31.5	85.4	6.7	2.7
			17:10	18.3	8.4	31.5	89.6	7.0	3,0
1.5	Cloudy	Moderate	17:13	18.3	8.4	31.6	85.0	6.6	2.7
	011.	M. d	17:10	18.3	8.4	31.6	87.1	6.8	2.8
2.0	Cloudy	Moderate	17:14	18.3	8.4	31.6	84.6	6.6	2.7
		M	17:10	18.3	8,4	31.5	86.4	6.7	2.7
2.5	Cloudy	Moderate	17:14	18.3	8.4	31.6	84.6	6.6	2.6
			17:10	18.3	8,4	31.5	85,8	6.7	2.7
3.0	Cloudy	Moderate	17:14	18.2	8.4	31.6	84.9	6.6	2.6
			17:10	18.3	8.4	31.6	85.4	6.7	2.7
3.5	Cloudy	Moderate	17:14	18.2	8.4	31.7	85.5	6.7	2.8
			17:10	18.3	8.4	31.6	85.3	6.7	2.8
4.0	Cloudy	Moderate	17:14	18.1	8,5	31.7	86.3	6.8	2.8
		• • • • • • • • • • • • • • • • • • • •	17:11	18.3	8.4	31.6	85.2	6.6	2.8
4.5	Cloudy	Moderate	17:14	18.1	8.5	31.7	87.9	6.9	2.8
			17;11	18.3	8.4	31.6	85,1	6.6	3.2
5.0	Cloudy	Moderate	17:14	18.1	8.5	31.7	88.2	6.9	2.6
			17:11	18.2	8.4	31.6	85.2	6.7	3.2
5,5	Cloudy	Moderate	17:15	18.1	8.5	31.7	88.9	7.0	2.8
			17:11	18.2	8.4	31.6	86.0	6.7	3.2
6.0	Cloudy	Moderate	17:15	18.0	8.5	31.8	89.4	7.0	2.6
			17:12	18.1	8.5	31.7	87.5	6.8	3,1
6.5	Cloudy	Moderate	17:15	18.0	8.5	31.8	90.4	7.1	2.6
			17:12	18.0	8.5	31.8	88.2	6.9	2.7
7.0	Cloudy	Moderate	17:15	18,0	8.5	31.9	91.2	7.1	2.6
			17:12	18.0	8.5	31.9	89.4	7.0	2.7
7.5	Cloudy	Moderate	17:15	18.0	8.5	31.9	92.2	7.2	2.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			17:10	18,3	8.4	31.6	90.5	7.1	3.2
1.0	Cloudy	Moderate	17:13	18.3	8.4	31.5	85.4	6.7	2.7
			17:10	18.3	8.4	31.6	85.3	6.7	2.8
4.0	Cloudy	Moderate	17:14	18.1	8.5	31.7	86.3	6,8	2.8
			17:12	18.0	8.5	31.8	88.2	6.9	2.7
7.0	7.0 Cloudy	Moderate 17:	17:15	18.0	8.5	31.9	91.2	7.1	2.6

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Col	8-Feb-13
Checked by:	W.K. Tang	Viva:	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH1 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:02	18.1	8.5	31.8	92.7	7.2	2.4
0.5	Cloudy	Moderate	16:10	18.1	8.5	31.8	93.4	7.3	2.4
			16:02	18.1	8.5	31.8	93.3	7.3	2.4
1.0	Cloudy	Moderate	16:10	18.1	8.5	31.8	93.0	7.3	2.4
			16:04	18.1	8.5	31.8	92.1	7.2	2.4
1.5	Cloudy	Moderate	16:10	18.1	8.5	31.8	92.1	7.2	2.4
			16:04	18.1	8.5	31.8	91.9	7.2	2.4
2.0	Cloudy	Moderate	16:11	18.1	8,5	31.8	91.8	7.2	2.4
		14	16:04	18.1	8.5	31.8	91.7	7.2	2.4
2.5	Cloudy	Moderate	16:11	18.1	8.5	31.8	91.6	7.2	2.4
		11	16:05	18.1	8.5	31.8	91.7	7.2	2.3
3.0	Cloudy	Moderate	16:11	18.1	8.5	31.8	91.7	7.2	2.3
	A)	11. 3	16:05	18,1	8.5	31.8	91.6	7.2	2.4
3.5	Cloudy	Moderate	16:11	18,1	8.5	31.8	91.4	7.1	2.3
			16:05	18.1	8.5	31.8	91.5	7.1	2.4
4.0	Cloudy	Moderate	16:11	18.1	8.5	31.8	91.5	7.1	24
			16:06	18.1	8.5	31,8	91.3	7.1	2.4
4.5	Cloudy	Moderate	16:11	18.1	8.5	31.8	91.2	7.1	2.3
			16:06	18.1	8.5	31.7	91.4	7.1	2.5
5.0	Cloudy	Moderate	16:12	18.1	8.5	31.7	91.3	7.1	2.5
			16:06	18.1	8,5	31.7	91.2	7.1	2.5
5.5	Cloudy	Moderate	16:12	18.1	8.5	31.7	91.3	7.1	2.4
~~	Claude	Madagia	16:06	18.1	8.5	31.8	91.2	7.1	2.5
6,0	Cloudy	Moderate	16:12	18.1	8.5	31.8	91.0	7.1	2.5
		11-2	16:06	18.1	8.5	31.7	90.7	7.1	2.4
6.5	Cloudy	Moderate	16:12	18.1	8.5	31.8	90.8	7.1	2.5
7.0	Claude	Madoroto	16:07	18.1	8.5	31.8	90.6	7.1	2.5
7.0	Cloudy	Moderate	16:12	18.1	8.5	31.8	90.6	7.1	25
7.5	Cloudy	Moderate	16:07	18.1	8.5	31.8	90.6	7.1	2.5
7.5	Cloudy	Moderate	16:12	18.1	8.5	31.7	90.4	7.1	26
8.0	Cloudy	Moderate	16:07	18.1	8.5	31.8	90.7	7.1	24
0.0	Cioday	Modelate	16:12	18.1	8.5	31.8	90.7	7.1	24
8.5	Cloudy	Moderate	16:07	18,1	8.5	31,8	90.7	7.1	2.5
0.5	Ciology	HIOGERALE	16:12	18.1	8.5	31,8	90.7	7.1	2.5
9.0	Cloudy	Moderate	16:07	18.1	8.5	31.8	90.8	7.1	2.5
5.0	Oloday	INVOCIDIO	16:12	18.1	8.5	31.8	90.8	7.1	2.4
9.5	Cloudy	Moderate	16:07	18.1	8.5	31.7	90.7	7.1	2.5
3. Q	Civility	Mingelate	16;12	18.1	8,5	31.8	90.7	7.1	2.4
10.0	Cloudy	Moderate	16:08	18.1	8.5	31.7	90.5	7.1	2.5
10.0	Cioudy	11/0001810	16:13	18.1	8.5	31.7	90.7	7.1	2.5

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH1 - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

,		1				Y		I	
10.5	Cloudy	Moderate	16:08	18.1	8.5	31.8	90,5	7.1	2.5
,	*,,,,,		16:13	18.1	8.5	31.8	90.6	7.1	2.4
11.0	Cloudy	Moderate	16:08	18.1	8.5	31.8	91.0	7.1	2.4
11.0	Giodaly	HIDDUIG	16:13	18.1	8,5	31.8	91.1	7.1	2.4
11.5	Claudu	Moderate	16:08	18.1	8.5	31.8	90.7	7.1	2.4
11.0	Cloudy	Woodlate	16:13	18.1	8.5	31.8	90.9	7.1	2.4
40.0	Clauda	Lta do rato	16:08	18.1	8.5	31.8	90.6	7.1	2.4
12.0	Cloudy	Moderate	16:13	18.1	8.5	31.8	90.7	7.1	2.4
			16:08	18.1	8.5	31.8	90.6	7.1	2.5
12.5	Cloudy	Moderate	16:13	18.1	8.5	31.8	90.6	7.1	2.5
4.0.0			16:08	18.1	8,5	31.8	90.5	7.1	2.4
13.0	Cloudy	Moderate	16:13	18.1	8.5	31.8	90.5	7.1	2.6
			16:09	18.1	8.5	31.8	90.4	7.1	2.8
13.5	Cloudy	Moderate	16:13	18.1	8.5	31.8	90.5	7.1	2.6
			16:09	18.1	8.5	31.8	90.3	7.1	2.8
14.0	Cloudy	Moderate	16:13	18.1	8.5	31.8	90.3	7.1	2.8
	-1. /		16:09	18,1	8.5	31.8	90.2	7.0	2.4
14.5	Cloudy	Moderate	16:13	18.1	8.5	31.7	90.2	7.1	2.4
			16:09	18.1	8.5	31.8	90.3	7.1	2.5
15.0	Cloudy	Moderate	16;14	18.1	8.5	31.8	90.4	7.1	2.4
			16:09	18.1	8.5	31.8	90.5	7.1	2.4
15.5	Cloudy	Moderate	16:14	18.1	8.5	31.8	90.5	7.1	2.4
			16:09	18.1	8.5	31.8	90,6	7.1	2.3
16.0	Cloudy	Moderate	16:14	18.1	8.5	31.8	90,8	7.1	2.3
			16:10	18.1	8.5	31,8	90,5	7.1	2.3
16.5	Cloudy	Moderate	16:14	18.1	8.5	31.8	90,5	7.1	2.3
			16:10	18.1	8.5	31,8	90.6	7.1	2.3
17.0	Cloudy	Moderate	16:14	18.1	8.5	31.8	90.7	7.1	2.3
			16:10	18.1	8.5	31.8	90.6	7.1	2.4
17.5	Cloudy	Moderate	16:14	18.1	8.5	31.8	90.7	7.1	2.3
			16:10	18.1	8,5	31.8	90.6	7.1	2.5
18.0	Cloudy	Moderate	16:14	18.1	8,5	31.9	90.5	7.1	2.7
			16:10	18.1	8.5	31.9	90.6	7.1	10.5
18.5	Cloudy	Moderate	16:14	18.1	8.5	31.8	90.6	7.1	10.1
	I	·				L	L	<u> </u>	

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity pot	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbletty (NTU)
	Clauda	Moderate	16:02	18.1	8.5	31.8	93.3	7.3	2.4
1.0	Cloudy	Moderate	16:10	18.1	8,5	31.8	93.0	7.3	2.4
	011	Moderate	16:07	18,1	8.5	31.7	90.7	7.1	2.5
9.5	Cloudy	wodelate	16:12	18.1	8.5	31.8	90.7	7.1	2.4
40.0	Claud	Madaraia	16:10	18.1	8.5	31.8	90.6	7.1	2.5
16.0	18.0 Cloudy	Moderate	16:14	18.1	8.5	31.9	90.5	7.1	2.7

	Name	Signature	Date
Conducted by:	Lam Ho Chun	th	8-Feb-13
Checked by:	W.K. Tang	Muai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH2 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:16	18.0	8.5	31.9	96.7	7.6	4.3
0.5	Cloudy	Moderate	15:22	18.0	8.5	31.9	97.1	7.6	4.9
			15:16	18.0	8.5	31.9	95.2	7.4	3.3
1.0	Cloudy	Moderate	15:22	18.0	8.5	31.9	95.5	7.5	3.5
			15:17	18.0	8.5	31.8	94.6	7.4	3.6
1.5	Cloudy	Moderate	15:22	18.0	8.5	31.8	94.8	7.4	3.8
	n		15:17	18.0	8,5	32.0	95.0	7.4	2.7
2.0	Cloudy	Moderate	15:22	18.0	8.5	31.9	95.1	7.4	2.6
4.5	Olt-	***	15:17	18.0	8.5	31.9	95.3	7.5	2.7
2.5	Cloudy	Moderate	15:22	18.0	8.5	31.9	95.4	7.5	2.5
	011	***	15:17	18.0	8.5	31.8	94.8	7.4	2.6
3.0	Cloudy	Moderate	15:22	18.0	8,5	31.9	94.8	7.4	2.6
0.5	Clavida	Moderate	15:17	18,0	8.6	32.0	95,5	7.5	2.3
3,5	Cloudy	Moderate	15:22	18.0	8.5	31.9	95.5	7.5	2.3
40	Claude	Moderate	15:17	18.0	8.6	31.9	95.6	7.5	2.3
4.0	Cloudy	Moderate	15:23	18.0	8.5	31.9	95.8	7.5	2.3
4.5	Cloudy	Moderate	15:18	18.0	8.6	32.0	95.7	7.5	2.4
4.5	Cloudy	Modelate	15:23	18.0	8.5	31.9	95.7	7.5	2.3
5.0	Cloudy	Moderate	15:18	18.0	8.6	32.0	95.8	7.5	2.4
5.0	Oloddy	Moderate	15:23	18.0	8.6	32.0	96.1	7.5	2.6
5.5	Cloudy	Moderate	15:18	18.0	8.6	32.0	96.3	7.5	2.6
0.0	Oloday	Moderato	15:23	18.0	8.6	32.0	96.1	7.5	2.6
6.0	Cloudy	Moderate	15:18	18.0	8.6	32.0	96.3	7.5	2.4
0.0	0.000	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15:23	17.9	8.6	32.0	96.3	7.5	2.3
6.5	Cloudy	Moderate	15:19	17.9	8,6	32.0	96.5	7,5	2.2
V.V	V .C.L.,		15:24	17.9	8.6	32.0	96.4	7.5	2.2
7.0	Cloudy	Moderate	15:19	17.9	8.6	32.1	96.5	7.5	2.3
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		15:24	17.9	8.6	32.0	96.6	7.6	2.3
7.5	Cloudy	Moderate	15:19	17.9	8.6	32.0	96.7	7.6	2.5
			15:24	17.9	8.6	32.1	96.7	7.6	2.2
8.0	Cloudy	Moderate	15:19	17.9	8.6	32.0	96.7	7.6	2.5
			15:24	17.9	8.6	32.0	96.7	7.6	2.3
8.5	Cloudy	Moderate	15:19	17.9	8.6	32.0	96.6	7.6	2.2
	,		15:24	17.9	8.6	32.0	96.6	7.6	2.2
9.0	Cloudy	Moderate	15:19	17.9	8.6	32.0	96.6	7.6	2.3
			15:24	17.9	8.6	32.0	96.7	7.6	2.2
9.5	Cloudy	Moderate	15:20	17.9	8.6	32.1	96.6	7.6	2.2
			15:25	17.9	8.6	32.1	96.6	7.6	2.2
10.0	Cloudy	Moderate	15:20	17.9	8.6	32.1	96.7	7.6	2.3
			15:25	17.9	8.6	32.1	96.8	7.6	2.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at VH2 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

10.5	Cloudy	Moderate	15:20	17.9	8.6	32.1	96.8	7.6	2.2
10.5	Cloudy	Moderate	15:25	17.9	8.6	32.1	96.8	7.6	2.3
44.0	Olevete	Madada	15:20	17.9	8.6	32.1	96.7	7.6	2.1
11.0	Cloudy	Moderate	15:25	17.9	8,6	32.1	96.7	7.6	2.1
44.5	Olevete	Madaada	15:20	17.9	8.6	32.1	96.7	7.6	2.4
11.5	Cloudy	Moderate	15:25	17.9	8.6	32.1	96.7	7.6	2.4
12.0	Cloudy	Moderate	15:20	17.9	8.6	32.1	96.6	7.6	2.3
12.0	Cloudy	Woderate	15:25	17.9	8.6	32.1	96.6	7.6	2.3
12.5	Cloudy	Moderate	15:20	17.9	8.6	32.1	96.6	7.6	2.3
12.5	Cioddy	Moderate	15:25	17.9	8.6	32.1	96.6	7.6	2.2
13.0	Claudy	Moderate	15:20	17.9	8.6	32.1	96.5	7.5	2.2
13.0	Cloudy	Moderate	15:25	17.9	8.6	32.1	96.5	7.5	2.2
13.5	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.5	7.5	2.2
13.5	Cioddy	Moderate	15:25	17.9	8.6	32.0	96.5	7.5	2.2
14.0	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.5	7.5	2.2
14.0	Cloudy	Moderate	15:2 5	17.9	8.6	32.1	96.5	7.5	2.2
14.5	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.5	7.5	2.1
14.5	Cioddy	Middelate	15:26	17.9	8.6	32.1	96,5	7.5	2.2
15.0	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.4	7.5	2.1
19.0	Cicady	Widdelate	15:26	17.9	8.6	32.1	96.4	7.5	2.2
15.5	Cloudy	Moderate	15:21	17.9	8,6	32.1	96.3	7.5	2.1
10.0	Cioudy	Widdelate	15:26	17.9	8.6	32.1	96.3	7.5	2.2
16.0	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.4	7.5	2.2
10.0	Cioday	Mioderate	15:26	17.9	8.6	32.1	96.4	7.5	2.1
16.5	Cloudy	Moderate	15:21	17.9	8.6	32.1	96.3	7.5	2.1
10.0	Cioudy	Mondiara	15:26	17.9	8.6	32.1	96.3	7.5	2.2
17.0	Cloudy	Moderate	15:22	17.9	8.6	32.1	96.0	7.5	2.3
17.0	Cioudy	Moderate	15:27	17.9	8.6	32.1	96.1	7.5	2.3

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
4.0	Claude	Moderate	15:16	18.0	8.5	31.9	95.2	7.4	3.3
1.0	Cloudy	Moderate	15:22	18.0	8.5	31.9	95.5	7.5	3.5
0.75	01	břa danala	15:27	17.9	8.6	32.0	96.2	7.5	2.3
8.75	Cloudy	Moderate	15:27	17.9	8.6	32.0	96.2	7.5	2.2
	01	Moderate	15:21	17.9	8.6	32.1	96.3	7.5	2.1
10.5	16.5 Cloudy Moderate	Modelate	15:26	17.9	8.6	32.1	96.3	7.5	2.2

	Name	Signature	Date
Conducted by:	Lam Ho Chun	th	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at JVC - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO \$aturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			15:49	19.4	7.6	24.2	65,4	5.0	4.6
0.5	Cloudy	Moderate	15:53	19.8	7.7	20.5	65.7	5.0	4.0
4.0	Clavelle	NA - 2 1 -	15:49	20.7	7.5	17.9	63.7	4,9	3.4
1.0	Cloudy	Moderate	15:53	20.9	7.4	17.6	62.3	4.7	3.3
	0:1	b d • · · · · · · · · · · · · · · · · · ·	15:49	18.6	7.9	30.3	69.3	5.3	1.4
1.5	Cloudy	Moderate	15:54	18.5	7.9	30.3	70.1	5.3	1.4
0.0	Channels	Moderate	15:49	18.5	7.9	30.6	75.6	5,8	1.1
2.0	Cloudy	Moderate	15:54	18.5	7.9	30.6	76.5	5.8	1.1
0.5	01	Madada	15:50	18.4	7.9	30.7	77.5	5.9	1.9
2.5	Cloudy	Moderate	15:54	18.4	7.9	30.6	76.4	5.8	1.7
2.0	Channel	B A a d a a a a a a	15:50	18.3	8.0	30.8	76.2	5,8	2.4
3.0	Cloudy	Moderate	15:54	18.3	8.0	30.8	76.0	5.8	2.5
0.5	011-	Madada	15:50	18.3	8.0	30.9	75.9	5.8	2.5
3.5	Cloudy	Moderate	15:55	18.3	8.0	30.9	75.4	5.7	2.4
	Classifis	Moderate	15:51	18.3	8,0	30.9	75.2	5.7	2.5
4.0	Cloudy	Windelare	15:55	18.3	8.0	30.9	76.3	5.8	2.6

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	011		15:49	20.7	7.5	17.9	63.7	4,9	3.4
1.0	Cloudy	Moderate	15:53	20.9	7.4	17.6	62.3	4.7	3,3
0.5	011		15:50	18.3	8.0	30.9	75,9	5.8	2.5
3.5	Cloudy	Moderate	15:55	18.3	8.0	30.9	75.4	5.7	2.4

	Name	Signature	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Wwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at KT1 - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 1.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
	_, ,		16:45	18,9	7.8	26.5	76.9	5.9	1.5
0.5	Cloudy	Moderate	16:49	18.8	7.8	23.6	79.2	6.0	1.5
			16:45	18.8	8.0	26.4	81.5	6.2	1.2
1.0	Cloudy	Moderate	16:50	18.8	8.0	26.7	84.2	6.4	1.2
	a		16:45	18,6	8.0	30.2	86.6	6.6	1.2
1.5	Cloudy	Moderate	16:50	18.4	8.0	30.5	86.5	6.6	. 1.2
	- · · · · · · · · · · · · · · · · · · ·	*4. **	16:46	18,6	8.0	29.1	92.7	7.1	1.2
2.0	Cloudy	Moderate	16:50	18.7	7.9	29.0	90.8	6.9	1.2
A.F.	01	Ma da saka	16:46	18.8	7.9	29.6	89.6	6.8	1.2
2.5	Cloudy	Moderate	16:50	18.6	8.0	30,3	87.8	6.7	1.2
	01	Moderate	16:46	18.4	8.0	30.6	88.7	6.8	1.2
3.0	Cloudy	Moderate	16:50	18.3	8.1	30.6	90.2	6.9	1.2
3.5	Olavida	Moderate	16:46	18.4	8,1	30.6	93.6	7.1	1.1
3.5	Cloudy	Modelate	16:51	18.3	8.1	30.7	93.1	7.1	1.1
	Claud.	Moderate	16:47	18.2	8.1	30.8	93.5	7.1	1.2
4.0	··· Cloudy	Modelate	16:51	18.3	8.1	30.7	93.7	7.1	1.2
4.5	011-	Moderate	16:47	18,3	8.1	30.7	94.9	7.2	1.1
4.5	Cloudy	Moderate	16:51	18.2	8.1	30,8	93.9	7.1	1.1
	01	Moderate	16:47	18.3	8.1	31.2	94.2	7.2	1.1
5.0	Cloudy	Moderate	16:51	18.4	8.1	31.2	95.9	7.3	1.1
	A1		16:47	18.3	8.1	31.6	96.3	7.3	1.1
5.5	Cloudy	Moderate	16:52	18.3	8.1	31.6	95.7	7.3	1.1
	Claudi	Madazala	16:48	18.3	8.1	31.7	98.1	7.5	1.2
6.0	Cloudy	Moderate	16:52	18.4	8.1	31.8	96.8	7.4	1.1
	Ols., f.	******	16:48	18.1	8.1	32.0	97.3	7.4	1.7
6.5	Cloudy	Moderate	16:52	18.1	8.1	32.6	98.2	7.5	1.7

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρH	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidīty (NTU)
	a)		16:45	18.8	8.0	26.4	81.5	6.2	1.2
1.0	Cloudy	Moderate	16:50	18.8	8,0	26.7	84.2	6.4	1.2
			16:46	18.4	8.1	30.6	93.6	7.1	1.1
3.5	Cloudy	Moderate	16:51	18.3	8.1	30.7	93.1	7.1	1.1
		4.	16:48	18.3	8.1	31.7	98,1	7.5	12
6.0	Cloudy	Moderate	16:52	18.4	8.1	31.8	96.8	7.4	1.1

	Name	Signatyre	Date
Conducted by:	Law Chun Hong	24	8-Feb-13
Checked by:	W.K. Tang	lma:	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at KTN - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 0.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
		N	14:53	23.5	7.2	11.6	86.5	6.6	5.2
0.5	Cloudy	Moderate	14:56	23.5	7.2	11.8	87.1	6.6	5.3
			14:54	21.6	7.4	16.2	71.5	5.4	3.2
1.0	Cloudy	Moderate	14:56	21.8	7.4	17.2	69.4	5.3	3.4
			14:54	19.2	7.7	29.1	60.3	4.6	1.5
1,5	Cloudy	Moderate	14:57	19.2	7.7	29.2	61.0	4.6	1.4
			14:54	18.7	7.5	30.6	48.3	3.7	2.8
2.0	Cloudy	Moderate	14:57	18.7	7.5	30.6	46.6	3.5	2.8
			14:55	18.6	7,5	30.7	38.6	2.9	3.2
2.5	Cloudy	Moderate	14:57	18.6	7.5	30.7	38.0	2.9	3.2

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			14:54	21.6	7.4	16.2	71.5	5.4	3.2
1.0	Cloudy	Moderate	14:56	21.8	7.4	17.2	69.4	5,3	3.4
			14:54	18.7	7.5	30.6	48.3	3.7	2.8
2.0	Cloudy	Moderate	14:57	18.7	7.5	30.6	46.6	3.5	2.8

	Name	Signature	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Tai Wan - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			16:26	18,1	8.5	31.8	96.1	7.5	2.4
0.5	Cloudy	Moderate	16:34	18.1	8.5	31.8	96.8	7.6	2.4
			16:27	18,1	8.5	31.8	95.3	7.4	2.3
1.0	Cloudy	Moderate	16:34	18.1	8.5	31,8	96.0	7.5	2.4
4 -			16:27	18.1	8,5	31.8	94.9	7.4	2.3
1.5	Cloudy	Moderate	16:34	18.1	8.5	31.8	95.3	7.5	2.3
			16:27	18.1	8.5	31.8	94.8	7.4	2.3
2.0	Cloudy	Moderate	16:34	18.1	8.5	31.9	95,0	7.4	2.3
	011		16:27	18.1	8.5	31.8	94.8	7.4	2.3
2.5	Cloudy	Moderate	16:35	18.0	8.5	32.0	95,5	7.5	2.4
•	0 11-		16:27	18.1	8.5	31.8	94.8	7.4	2.4
3.0	Cloudy	Moderate	16:35	18.0	8.5	32.0	95.9	7.5	2.6
	AL. 1		16:27	18.0	8.5	32.0	95,0	7.4	2.4
3.5	Cloudy	Moderate	16:35	18.0	8.6	32.0	96.0	7.5	2.6
	011	11-1	16:28	18.0	8.5	32.0	94.4	7.4	2.3
4.0	Cloudy	Moderate	16:35	18.0	8.5	31.9	96.1	7.5	2.5
4.5	Olavata.	Moderate	16:28	18.0	8.5	32.0	95.7	7.5	2.4
4.5	Cloudy	Moderate	16:36	18.0	8.5	32.0	96.4	7.5	2.3
50	Claudy	Moderate	16:28	18.0	8.5	32.0	96.1	7.5	2.4
5.0	Cloudy	Moderate	16:36	18.0	8.6	32.0	96.4	7.5	2.3
E E	Claude	Moderate	16:28	18.0	8.5	32.0	96.4	7.5	2.8
5,5	Cloudy	Widdelate	16:36	18.0	8.5	32.0	96.4	7.5	2.7
6.0	Cloudy	Moderate	16:28	18.0	8.5	32.0	96.9	7.6	2.7
0.0	Cloudy	Moderate	16:36	18.0	8.6	32.0	96.5	7.5	2.5
6.5	Cloudy	Moderate	16:29	18,0	8.5	32.0	96.9	7.6	2.7
0.5	Cioddy	lyiodelate	16:36	18.0	8.5	32.0	96.4	7.5	2.4
7.0	Cloudy	Moderate	16:29	18.0	8.5	32.0	96.9	7.6	2.7
7.0	Gioday	Mioderate	16:36	18.0	8.6	32.0	96.5	7.5	2.5
7.5	Cloudy	Moderate	16:29	18.0	8.5	32.0	96.9	7.6	2.5
7.5	Jioddy	11,000(1016	16:37	18,0	8.6	32.0	96.5	7.5	2.4
8,0	Cloudy	Moderate	16:29	18.0	8.6	32.0	96.9	7.6	2.4
5,5	0.500)	11.44014.0	16:37	18.0	8.6	32.0	96.5	7.5	2.3
8.5	Cloudy	Moderate	16:29	18.0	8.6	32.0	97.0	7.6	2.4
V.V	Ç.300)		16:37	18.0	8,6	32.0	96.6	7.6	2.4
9.0	Cioudy	Moderate	16:29	18.0	8.6	32.0	97.1	7.6	2.3
V.V	Ç.300y		16:37	18.0	8.6	32.0	96.6	7.6	2.4
9.5	Cloudy	Moderate	16:29	18.0	8.6	32.0	97.1	7.6	2.4
0.5	0,000)		16:38	18.0	8.6	32.0	96,7	7.6	2.4
10.0	Cloudy	Moderate	16:30	18.0	8.6	32.0	97.1	7.6	2.8
10.0	Cioudy	imonetate	16:38	18.0	8,6	32.0	96.6	7.6	2.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Tai Wan - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.5m

10.5	Cloudy	Moderate	16:30	18.0	8.6	32.0	97.3	7.6	2.6
10.5	Cioddy	Iviouelate	16:38	18.0	8.6	32.0	96.7	7.6	2.3
44.0		Madagas	16:30	18.0	8.6	32.0	97.3	7.6	2.5
11.0	Cloudy	Moderate	16:38	18.0	8.6	32.0	96,7	7.6	2.3
		***	16:30	18.0	8.6	32.0	97.2	7.6	2.5
11.5	Cloudy	Moderate	16:38	18.0	8.6	32.1	96.7	7.6	2.4
10.0		15. ()	16:31	18.0	8,6	32.0	97.2	7.6	2.4
12.0	Cloudy	Moderate	16:38	18.0	8.6	32.0	96.6	7.6	2.4
40.5			16:31	18.0	8.6	32.0	97.2	7.6	2.5
12.5	Cloudy	Moderate	16:39	18.0	8.6	32.0	96.6	7.6	2.4
40.0	011	11	16:31	18.0	8.6	32.0	97.3	7.6	2.4
13.0	Cloudy	Moderate	16:39	18.0	8.6	32.0	96.6	7.6	2.4
40.5	0		16:31	18.0	8.6	32.0	97.2	7.6	2.5
13.5	Cloudy	Moderate	16:39	18.0	8.6	32.0	96.6	7.6	2.4
44.0	01	11-1	16:31	18.0	8.6	32.1	97.2	7.6	2.5
14.0	Cloudy	Moderate	16:39	18.0	8.6	32.1	96,6	7.6	2.6
44.5	01	14-2	16:32	18.0	8.6	32.0	97.1	7.6	2.7
14.5	Cloudy	Moderate	16:39	18.0	8.6	32.1	96.6	7.5	2.5
45.0	Olavida	Madamia	16:32	18.0	8.6	32.0	97.2	7.6	2.5
15.0	Cloudy	Moderate	16:39	18.0	8.6	32.0	96.5	7.5	2.4
15.5	Cloudy	Moderate	16:32	18.0	8.6	32.1	97.1	7.6	2.4
19.9	Cloudy	Moderate	16:39	18.0	8.6	32.1	96.6	7.5	2.3
16.0	Cloudy	Madamia	16:32	18.0	8.6	32.1	97.0	7.6	2.4
16.0	Cloudy	Moderate	16:39	18.0	8.6	32.1	96.6	7.5	2.3
16,5	Claudy	Moderate	16:33	18.0	8,6	32.0	96.9	7.6	2.5
10,0	Cloudy	Moderate	16:39	18.0	8.6	32.1	96.6	7.6	2.3

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	На	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbldity (NTU)
8.5	Cloudy	Moderate	16:29	18.0	8.6	32.0	97.0	7.6	2.4
0.0	Cioudy	Wodelate	16:37	18.0	8.6	32.0	96.6	7.6	2.4

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Kwai	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Cha Kwo Ling - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 1.5m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	pН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
	Claude	Moderate	17:08	18.0	8.2	31.0	104.3	7.9	1.6
0.5	Cloudy	Modelare	17:17	18.0	8,1	31.0	103.4	7.9	1.5
	Q1t	11-2	17:09	18.0	8.1	31.0	102.4	7.8	1.3
1.0	Cloudy	Moderate	17:17	18.0	8.1	30.9	102.3	7.8	1.3
	011	11	17:09	18.0	8.1	30,9	101.8	7.8	1.2
1.5	Cloudy	Moderate	17:17	18.0	8.1	30.9	100.8	7.7	1.2
	01	11	17:09	18.0	8.2	31.0	100.7	7.7	1.1
2.0	Cloudy	Moderate	17:18	18.0	8.2	31.0	101.4	7.7	1.1
			17:09	17.9	8.2	31.4	101.3	7.7	1.3
2.5	Cloudy	Moderate	17:18	17.9	8.2	31.3	102.6	7.8	1.2
			17:10	17.9	8.2	31.3	102.3	7.8	1.2
3.0	Cloudy	Moderate	17:18	17.9	8.2	31.4	101.8	7.8	1.2
	<u></u>		17:10	17.9	8.2	31.4	101.4	7.7	1.2
3.5	Cloudy	Moderate	17:18	17.9	8.2	31.5	101.1	7.7	1.2
			17:10	17.9	8.2	31.5	102.1	7.8	1.3
4.0	Cloudy	Moderate	17:19	17.9	8.2	31.5	101.5	7.7	1.2
			17:10	17.9	8.2	31.5	102.2	7.8	1.3
4.5	Cloudy	Moderate	17:19	17.9	8.2	31.5	101.9	7.8	1.3
			17:11	17.9	8.2	31.5	101.1	7.7	1.4
5.0	Cloudy	Moderate	17:19	17.9	8.2	31.5	100.2	7,6	1.3
			17:11	17.9	8.2	31.5	100.8	7.7	1.3
5.5	Cloudy	Moderate	17:19	17.9	8.2	31.5	100.5	7.6	1.3
			17:11	17.9	8.2	31.5	100.4	7.6	1.3
6.0	Cloudy	Moderate	17:19	17.9	8.2	31.5	99.4	7.6	1.3
			17:11	17.9	8.2	31.5	99.2	7.6	1.3
6.5	Cloudy	Moderate	17:20	17.9	8.2	31.5	99.7	7.6	1.4
			17:12	17.9	8.2	31.5	99.5	7.6	1.3
7.0	Cloudy	Moderate	17:20	17.9	8.2	31.5	100.0	7.6	1.3
			17:12	17.9	8.2	31.5	99.6	7.6	1.3
7.5	Cloudy	Moderate	17:20	17.9	8,2	31.5	99.8	7.6	1.3
			17:12	17.9	8.2	31.5	99.6	7.6	1.3
8.0	Cloudy	Moderate	17:21	17.9	8.2	31.5	99.0	7,5	1.3
			17:12	17.9	8.2	31.5	98.8	7.5	2.0
8.5	Cloudy	Moderate	17:21	17.9	8.2	31.5	99.3	7.6	2.1
			17:13	17.9	8.2	31.5	98.8	7.5	2.2
9.0	Cloudy	Moderate	17:21	17.9	8.2	31.5	98.4	7.5	1.9
			17:13	17.9	8.2	31.5	99.1	7.5	1.8
9.5	Cloudy	Moderate	17:21	17.9	8.2	31.5	98.7	7.5	1.8
			17:13	17.9	8.2	31.5	99.3	7.6	1.8
10.0	Cloudy	Moderate	17:22	17.9	8.2	31.5	98.6	7.5	1.8

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Cha Kwo Ling - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 1.5m

			17:13	17.9	8.2	31.5	99.2	7.6	1.8
10.5	Cloudy	Moderate	17:22	17.9	8.2	31.5	98.9	7.5	1.8
			17:13	17.9	8.2	31.5	99.3	7.6	1.8
11.0	Cloudy	Moderate	17:22	17.9	8.2	31.5	98.5	7.5	1.8
		Cloudy Moderate	17:14	17.9	8.2	31.5	98.1	7.5	1.3
11.5	Cloudy		17:22	17.9	8.2	31.5	97.9	7.5	1.4
			17:14	17.9	8.2	31.5	99.0	7.5	1.4
12.0	Cloudy	Moderate	17:22	17.9	8.2	31.5	98.1	7.5	1.4
	12.5 Cloudy	•••••	17:14	17.9	8.2	31.5	98.4	7.5	1.4
12.5		Moderate	17:23	17.9	8.2	31.5	98.8	7.5	1.3

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рΗ	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
0.5	01	15-J	17:11	17.9	8.2	31.5	99.2	7.6	1.3
6.5	Cloudy	Moderate	17:20	17.9	8.2	31.5	99.7	7.6	1.4

	Name	Signature	Date
Conducted by:	Law Chun Hong	A	8-Feb-13
Checked by:	W.K. Tang	Musi	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Quarry Bay - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU
ï		Moderate	15:39	18.0	8.6	32.1	96.8	7.6	2.6
0.5	Cloudy	Moderate	15:43	18.0	8.6	32.1	97.4	7.6	2.8
	A		15:39	18,0	8.6	32.1	96.2	7.5	2.6
1.0	Cloudy	Moderate	15:43	18.0	8.6	32.1	95.9	7.5	2.5
		*******	15:39	18.0	8.6	32.1	95.9	7.5	2.5
1.5	Cloudy	Moderate	15:43	18.0	8,6	32.1	95.9	7.5	2.6
	A) I .		15:40	18.0	8.6	32.1	96.0	7.5	2.5
2.0	Cloudy	Moderate	15:44	18.0	8.6	32.1	96.0	7.5	2.5
			15:40	18.0	8.6	32.1	95.9	7.5	2.5
2.5	Cloudy	Moderate	15:44	18.0	8.6	32.1	95.9	7.5	2,6
			15:40	18.0	8.6	32.1	96.0	7.5	2.5
3.0	Cloudy	Moderate	15:44	18.0	8.6	32.1	96.0	7.5	2.5
			15:40	18.0	8.6	32.1	95.8	7.5	2.7
3.5	Cloudy	Moderate	15:44	18.0	8.6	32.1	95.9	7.5	2.6
			15:40	18.0	8.6	32.1	95.8	7.5	2.7
4.0	Cloudy	Moderate	15:44	18.0	8.6	32.1	95.8	7.5	2.7
	720		15:41	18.0	8.6	32.1	95.7	7.5	2.6
4.5	Cloudy	Moderate	15:45	18.0	8.6	32.1	95.8	7.5	2.6
			15:41	18.0	8.6	32.1	95.7	7.5	2.5
5.0	Cloudy	Moderate	15:45	18.0	8.6	32.1	95.6	7.5	2.5
			15:41	18.0	8.6	32.1	95.5	7.5	2.6
5.5	Cloudy	Moderate	15:45	18.0	8.6	32.1	95.5	7,5	2.7
			15:41	18.0	8.6	32.1	95.4	7.5	2.5
6.0	Cloudy	Moderate	15:45	18.0	8.6	32.1	95.4	7.5	2.5
			15:41	18.0	8.6	32.1	95.4	7.5	2.7
6.5	Cloudy	Moderate	15:46	18.0	8.6	32.1	95.3	7.5	2.7
			15:41	18.0	8.6	32.1	95.4	7.5	2.6
7.0	Cloudy	Moderate	15:46	18.0	8.6	32.1	95,4	7.5	2.6
	<u> </u>		15:41	18.0	8.6	32.1	95.3	7.5	2.5
7.5	Cloudy	Moderate	15:46	18.0	8.6	32.1	95.3	7.5	2.5
			15:42	18.0	8.6	32.1	95.3	7.5	2.6
8.0	Cloudy	Moderate	15:46	18.0	8.6	32.1	95.2	7.4	2.5
	<u> </u>		15:42	18.0	8,6	32.2	95.2	7.4	2.8
8,5	Cloudy	Moderate	15:47	18.0	8.6	32.2	95.1	7.4	2.6
			15:42	18.0	8.6	32.1	95.1	7.4	2.7
9.0	Cloudy	Moderate	15:47	18.0	8.6	32.1	95.2	7.4	2.7
			15:42	18.0	8.6	32.1	95.2	7.4	2.7
9.5	Cloudy	Moderate	15:47	18,0	8.6	32.2	95.2	7.4	2.7
		1	15:42	18.0	8.6	32.2	95.1	7.4	2.7
10.0	Cloudy	Moderate	15:47	18.0	8.6	32.2	95.0	7.4	2.8

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Quarry Bay - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

10.5		Moderate	15:43	18.0	8.6	32.2	94.8	7.4	3.0
	Cloudy		15:47	18.0	8.6	32.2	94.9	7.4	3.0
44.0	Olas-da	Madada	15:43	18.0	8.6	32.2	94.8	7.4	2.9
11.0	Cloudy	Moderate	15:47	18.0	8.6	32.2	94.8	7.4	3.2
44.5	Olevania.		15:43	18.0	8.6	32.1	94.7	7.4	3.1
11.5	Cloudy Moderate	15:47	18.0	8.6	32.1	94.7	7.4	3.1	

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	ρН	Salinity ppt	DO Saturation (%)	(mg/L)	Turbidity (NTU)
6.0	Cloudy	Moderate	15:41	18.0	8.6	32.1	95.4	7.5	2.5
0.0	Gloudy		15:45	18.0	8.6	32.1	95.4	7.5	2.5

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Kerei	8-Feb-13

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Sai Wan Ho - Mid-Flood Tide

Sampling Date: 8 February 2013

Secchi Disc Depth: 2.0m

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			14:54	18.0	8.5	32.0	100.6	7.9	2.2
0.5	Cloudy	Moderate	14:59	18.0	8.5	32.0	102.6	8.0	2.2
			14:55	18.0	8,5	32.1	99.4	7.8	2.3
1.0	Cloudy	Moderate	14:59	18.0	8.5	32.1	99.5	7.8	2.4
	AL 1		14:55	18.0	8.5	32.1	99.4	7.8	2.4
1.5	Cloudy	Moderate	14:59	18.0	8.5	32.1	99.4	7.8	2.3
0.0	Claudia	Madarata	14:55	18.0	8.5	32.1	99.3	7.8	2.4
2.0	Cloudy	Moderate	14:59	18.0	8.5	32.1	99.3	7.8	2.3
2.5	Claudy	Moderate	14:55	18.0	8.5	32.1	99.3	7.8	2.2
2.5	Cloudy	Moderate	15:00	18.0	8.5	32.1	99.3	7.8	2.2
3.0	Clouds	Moderate	14:56	18.0	8.5	32.1	99.2	7.8	2.4
3.0	Cloudy	woderate	15:00	18.0	8.5	32.1	99.2	7.8	2.3
3.5	Claudy	Madarata	14:56	18.0	8.5	32.1	99.1	7.8	3.3
3.5	Cloudy	Moderate	15:00	18.0	8.5	32.1	99.1	7.7	3.3
4.0	Cloudy	Moderate	14:56	18.0	8.5	32.1	99.1	7.7	2.8
4.0	Gloudy	wioderata	15:00	18.0	8.5	32.1	99.1	7.8	2.8
4.5	Cloudy	Moderate	14:56	18.0	8.5	32.1	99.1	7.7	2.9
4.5	Cloddy	Modelate	15:00	18.0	8.5	32.1	99.1	7.7	2.6
5,0	Cloudy	Moderate	14:56	18,0	8.5	32.1	99.0	7.7	2.5
5,0	Cloudy	Moderate	15:00	18.0	8.5	32.1	98.8	7.7	2.4
5.5	Cloudy	Moderate	14:57	18.0	8.6	32.2	98.7	7.7	2.4
5.5	Cloudy	1410001918	15:00	18.0	8.6	32.2	98.7	7.7	2.4
6.0	Cloudy	Moderate	14:57	18.0	8.6	32.2	98.6	7.7	2.4
0.0	Cloudy	Moderate	15:00	18.0	8.6	32.2	98.6	7.7	2.4
6.5	Cloudy	Moderate	14:57	18.0	8.6	32.2	98.5	7.7	2.8
0.0	Oloudy	Moderato	15:01	18.0	8.6	32.2	98.4	7.7	2.8
7.0	Cloudy	Moderate	14:57	18.0	8.6	32.2	98.3	7.7	2.4
7.0	0,000	Moderate	15:01	18.0	8.6	32.2	98.3	7.7	2.5
7.5	Cloudy	Moderate	14:57	18.0	8.6	32.2	98.3	7.7	2.9
7.5	Cloudy	Moderato	15:01	18.0	8.6	32.2	98.3	7.7	2.8
8.0	Cloudy	Moderate	14:58	18.0	8.6	32.2	98.4	7.7	3.2
0.0	Olocay	mozorato	15:01	18.0	8.6	32.2	98.5	7.7	3.1
8.5	Cloudy	Moderate	14:58	18.0	8.6	32.2	98.4	7.7	3.2
0.0	0.000,	Moderato	15:01	18.0	8.6	32.2	98.5	7.7	3.3
9.0	Cloudy	Moderate	14:58	18.0	8,6	32.2	98.4	7.7	3.3
V.V	J.553,		15:01	18.0	8.6	32.2	98.4	7.7	3.3
9,5	Cloudy	Moderate	14:58	18.0	8.6	32.2	98.3	7.7	3,9
	3.000,		15:01	18.0	8.6	32.2	98.4	7.7	3.8
10.0	Cloudy	Moderate	14:58	18.0	8.6	32.2	98.1	7.7	4.2
,5.0	Oloudy	Moneyara	15:01	18.0	8.6	32.2	98.0	7.7	4.3

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Water Quality Monitoring Results at WSD Intake at Sai Wan Ho - Mid-Flood Tide

Sampling Date:

8 February 2013

Secchi Disc Depth: 2.0m

	10.5	Claudy	Moderate	14:58	18.0	8.6	32.2	97.8	7.6	4.5
	10.5	Cloudy		15:02	18.0	8.6	32.2	97.9	7.7	4.5
ľ	44.0	Al	1 da Janeta	14:58	18.0	8.6	32.2	97.8	7.6	4.5
	11.0	Cloudy	Moderate	15:02	18,0	8.6	32.2	97,8	7.6	4.2
		0)		14:59	18.0	8.6	32.2	97.8	7.6	3.9
	11.5	Cloudy Mo	Moderate	15:02	18.0	8,6	32.2	97.8	7.6	4.0

Water Depth (m)	Weather Condition	Sea Condition*	Sampling Time	Water Temperature (°C)	рН	Salinity ppt	DO Saturation (%)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
			14:57		8.6	32.2	98.6	7.7	2.4
6.0	Cloudy	Moderate	15:00	18.0	8.6	32.2	98.6	7.7	2.4

	Name	Signature	Date
Conducted by:	Lam Ho Chun	Ch	8-Feb-13
Checked by:	W.K. Tang	Knowi	8-Feb-13

APPENDIX E2 IN-SITU MEASUREMENT RESULTS FOR ODOUR SAMPLING

- Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Odour Monitoring Results on 27 February 2013

Location	Weather	Sea	Sampling	Water	Sampling	Ambient Air	Water	Redox	рН	1	Salinity	(ppt)	DO Satura	ation (%)	Dissolved Ox	kygen (mg/L)
Location	Condition	Condition*	Time	Depth (m)	Depth (m)	Temperature (°C)	Temperature (°C)	Potential (mV)	Value	Average	Value	Average	Value	Average	Value	Average
SA1	Fine	Calm	16:49	2.9	1.9	28.3 28.3	19.2 19.2	-92 -115	8.3 8.2	8.3	30.8 30.6	30.7	69.6 65.9	67.8	5.4 5.1	5.3
SA2	Fine	Calm	17:00	3.7	2.7	28.5 28.5	19.0 19.0	31 32	8.2 8.2	8.2	31.5 31.5	31.5	51.4 49.2	50.3	4.0 3.8	3.9
SA3	Fine	Calm	17:10	3.7	2.7	27.2 27.2	18.8 18.8	-115 -127	8.2 8.2	8.2	31.4 31.3	31.4	79.6 78.7	79.2	6.2 6.1	6.2
SA4	Fine	Calm	17:26	5.0	4.0	27.1 27.1	18.6 18.6	15 23	8.5 8.5	8.5	31.6 31.6	31.6	85.3 83.8	84.6	6.6 6.5	6.6
SA5	Fine	Calm	17:34	4.5	3.5	26.9 26.9	18.6 18.6	24 23	8.3 8.3	8.3	31.4 31.4	31.4	84.7 84.6	84.7	6.6 6.6	6.6
SA6	Fine	Calm	17:45	6.3	5.3	26.8 26.8	18.6 18.6	37 36	8.3 8.3	8.3	31.7 31.7	31,7	77.1 76.1	76.6	6.0 5.9	6.0
SA7	Fine	Calm	16:05	6.0	5.0	29.1 29.2	18.5 18.5	20 23	8.4 8.4	8.4	31.7 31.7	31.7	91.9 88.1	90.0	7.1 6.8	7.0
SA8	Fine	Calm	15:53	6.5	5.5	29.7 29.7	18.5 18.5	32 30	8.5 8.5	8.5	31.7 31.7	31.7	97.5 95.8	96.7	7.6 7.4	7.5
SA9	Fine	Calm	15:17	6.6	5.6	28.1 28.0	18.5 18.4	62 65	8.4 8.5	8.5	31.7 31.8	31.8	91.0 90.1	90.6	7.1 7.0	7.1
SA10	Fine	Calm	14:50	6.5	5.5	26.1 26.0	18.5 18.5	49 40	8.5 8.5	8.5	31.9 31.9	31.9	93.7 92.5	93.1	7.3 7.2	7.3
SA11	Fine	Calm	13:44	4.9	3.9	23.9 23.9	18.9 18.9	104 99	8.2 8.2	8.2	31.6 31.7	31.7	91.3 90.1	90.7	7.0 6.9	7.0
SA12	Fine	Calm	14:17	4.9	3.9	24.9 24.7	18.7 18.7	63 42	8.5 8.4	8.5	31.8 31.8	31.8	96.5 95.4	96.0	7.5 7.4	7.5
SA13	Fine	Calm	14:32	4.0	3.0	27.7 27.7	18.7 18.7	-144 -172	8.5 8.6	8.6	31.8 31.8	31.8	90.3 87.6	89.0	7.0 6.8	6.9

	Name	Signature	Date
Conducted by:	Lee Man Hei	her	27 February 2013
Checked by:	W.K. Tang	Kvai	27 February 2013

APPENDIX E3 IN-SITU MEASUREMENT RESULTS FOR SEDIMENT MONITORING

Contract No. KL/2010/02

Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works (Phase 1)

Sediment Monitoring Field Record Sheet

Sampling Date: 28 February 2013

Sampling Location	Weather Condition	Co-ordinate Easting / Northing	Starting Time	Water Depth (m)	Remarks
SA1	Cloudy	838744.13 / 820311.91	16:57	3.4	
SA2	Cloudy	838840.95 / 820030.07	16:25	3.8	
SA3	Cloudy	839163.99 / 819942.90	15:56	4.0	
SA4	Cloudy	839407.66 / 819537.90	14:26	5.5	
SA5	Cloudy	839580.35 / 819512.47	17:40	4.8	
SA6	Cloudy	839647.87 / 819329.45	18:17	6.5	
SA7	Cloudy	840122.60 / 819275.72	13:35	6.6	
SA8	Cloudy	840270.71 / 819015.35	11:57	7.8	
SA9	Cloudy	840479.55 / 818798.14	11:21	8.0	
SA10	Cloudy	838694.90 / 819582.08	19:21	6.5	
SA11	Cloudy	838138.20 / 820038.77	20:00	5.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SA12	Cloudy	837892.97 / 819704.84	21:13	7.0	
SA13	Cloudy	837857.15 / 819436.94	22:05	5.4	

	Name	Signature	Date
Conducted by:	Lee Man Hei	her	28-Feb-13
Checked by:	Tang Wing Kwai	Carri	28-Feb-13

APPENDIX E4 ODOUR PATROL RESULT

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / -OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
1	04:48	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (E)	3.7	(2)
2	04:58	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.12/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	3.6	(2)
3	05:03	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/10/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2.8	(2)
4	05:06	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/①2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	1.5	(2)
5	08:16	High-Tide / Low Tide	Sunny / Fine Cloud / Rainy	1/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind-(SE)	1.6	(2)
6	08:19	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.10/2/3/4	sewage	Chemical Toilet at SFK's Site Office	Intermittent /- Continuous	Downwind / Upwlnd-(S)	3.1	(2)
7	06:16	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0/10/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (S)	5.5	(2)
8	06:22	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	, marine water	Intermittent-/Continuous	Downwind / Upwind-(S)	4.2	(2)
9	06:26	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent-/-Continuous	Downwind-/ Upwind (E)	0.6	(2)
10	06;28	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent-/-Continuous	Downwind / Upwind-(S)	3.2	(2)
11	06:30	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2.7	(2)
12	06:32	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.00/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	1.4	(2)
13	07:42	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.072/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind-(SE)	2.0	(2)
14	07:38	High Tide / Low Tide	Sunny / Fine / Cloud / Rainy	0/102/3/4	rubbish and sewage	exposed shores and marine water	Intermittent / Continuous	Downwind / ⊌pwind-(E)	1.9	(2)
15	07:35	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0.00/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (E)	2.6	(2)
16	07:32	High Tide / Low Tide	Sunny / Fine / Cloud) / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.2	(2)
17	07:30	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	3.1	(2)
18	07:27	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/①2/3/4	rubbish and dead fish smell	marine water	Intermittent /-Continuous	Downwind / Upwind-(E)	1.5	(2)
19	07:25	High Tide / Low Tide	Sunny / Fine / Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(E)	2.9	(2)
20	07:18	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind-/ Upwind (S)	2.3	(2)

#Note: Odour Intensity is to be divided into 5 levels which are ranked in the descending order as follows:

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EtA Report (2) Conducted on 25 February 2013 (3) Conducted on 26 February 2013

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong Identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc.

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: Ol-1 / -Ol-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
21	07:14	High-Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/①2/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (E)	4.7	(2)
22	07:06	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.9	(2)
23	07:04	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	2.1	(2)
24	07:02	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	O 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.9	(2)
25	07:00	High-Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.8	(2)
26	06:58	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	3.0	(2)
27	06:54	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	O 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.1	(2)
28	06:46	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent /- Continuous	Downwind / Upwind (SE)	4.5	(2)
29	06:19	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	1.4	(3)
30	06:24	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	2.0	(3)
31	08:20	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.4	(3)
32	08:27	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / ⊎pwind (S)	0.3	(3)
33	06:43	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.6	(3)
34	06:52	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (S)	1.5	(3)
35	06:56	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	1.5	(3)
36	07:53	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	@1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	3.8	(2)
37	05:28	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	3.7	(2)
38	05;30	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/①2/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / ⊎pwind (SE)	3.8	(2)
39	05:35	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (SE)	2.4	(2)
40	05:38	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0. 12/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (SE)	1.8	(2)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

^{0 -} Not detected, No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight Identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nulsance;

^{3 -} Strong identiflable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, Irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 26 February 2013

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / -OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
41	07:24	High Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	①1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind-	0.0	(3)
42	07:17	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	0/10/2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.5	(3)
43	07:12	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	1.3	(3)
44	07:08	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	O 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.9	(3)
45	06:02	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Gontinuous	Downwind / Upwind (S)	1.4	(3)
46	05:58	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind-/ Upwind (SE)	1.3	(3)
47	05:57	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0/①2/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Continuous	Downwind / Upwind (SE)	0.6	(3)
48	05:49	High Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SW)	0.3	(3)
49	07:44	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	0.9	(3)
50	07:46	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.12/3/4	sewage	water at Kal Tak Nullah	Intermittent / Continuous	Downwind-/ Upwind (S)	0.1	(3)
51	07:47	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	2,3	(3)
52	07:49	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	O 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	1.3	(3)
53	05:51	High Tide / Low Tide	Sunny / Fine / Cloudy Rainy	1 01/2/3/4	N/A	N/A	Intermittent /- Continuous	Downwind / Upwind (S)	1,5	(3)
54	05:53	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/12/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SW)	1,6	(3)
55	06:00	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / ⊎pwind (SW)	1.2	(3)
56	06:04	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	1,6	(3)
57	07:09	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Continuous	Downwind / Upwind (S)	1,0	(3)
58	07:11	High-Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	0.10/2/3/4	sewage	water at Kai Tak Nullah	Intermittent-/-Continuous	Downwind / Upwind (S)	0.5	(3)
59	07:16	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /- Continuous	Downwind / Upwind (SE)	0.4	(3)
60	07;23	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.12/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Gontinuous	Downwind-/-Upwind-	0.0	(3)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows;

- 0 Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;
- 1 Slight Identifiable odour, and slight chance to have odour nuisanco;
- 2 Moderate identifiable odour, and moderate chance to have odour nuisance;
- 3 Strong identifiable, likely to have odour nuisance
- 4 Extreme severe odour, and unacceptable odour level,

*Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

**Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 25 February 2013

	Name	s	Ignature
Conducted by:	Tang Wing Kwai		Lavi
Checked by:	Henry Leung)
	•		/

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: 01-4 / 01-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
1	04:48	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (E)	3.7	(2)
2	04:58	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/12/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	3.6	(2)
3	05:03	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/10/2/3/4	sewage	marine water	Intermittent /- Continuous	Downwind / Upwind-(S)	2.8	(2)
4	05:06	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/10/2/3/4	sewage	marine water	Intermittent-/-Continuous	Downwind / Upwind-(S)	1.5	(2)
5	08:16	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1.6	(2)
6	08:19	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.①/2/3/4	sewage	Chemical Toilet at SFK's Site Office	Intermittent / Continuous	Downwind / Upwind-(S)	3.1	(2)
7	06:16	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0/10/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	5.5	(2)
8	06:22	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/12/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (S)	4.2	(2)
9	06:26	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/12/3/4	sewage	marine water	Intermittent / Continuous	Downwind-/ Upwind (E)	0.6	(2)
10	06:28	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (S)	3.2	(2)
11	06:30	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2,7	(2)
12	06:32	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0.①/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	1.4	(2)
13	07:42	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.012/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (SE)	2.0	(2)
14	07:38	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0/102/3/4	rubbish, fishy smell and sewage	exposed shores and marine water	Intermittent / Continuous	Downwind / Upwind-(E)	1.9	(2)
15	07:35	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0.00/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(E)	2.6	(2)
16	07:32	High Tide / Low Tide	Sunny / Fine / Cloud / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(E)	2.2	(2)
17	07:30	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind-(E)	3.1	(2)
18	07:27	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/10/2/3/4	dead fish smell	exposed shores and marine water	Intermittent /-Continuous	Downwind / Upwind-(E)	1.5	(2)
19	07;25	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0.1 2/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind-(E)	2.9	(2)
20	07:18	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	2.3	(2)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 26 February 2013

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight Identifiable odcur, and slight chance to have odour nuisance;

^{2 -} Moderate Identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, imitating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3 °C (25 February 2013) and 19.0 - 24.9 °C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
21	07:14	High-Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	0/10/2/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (E)	4.7	(2)
22	07:06	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (E)	2.9	(2)
23	07:04	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	2,1	(2)
24	07:02	High-Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.9	(2)
25	07:00	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.8	(2)
26	06:58	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	3.0	(2)
27	06:54	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (E)	2.1	(2)
28	06:46	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	4,5	(2)
29	06:19	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	1.4	(3)
30	06:24	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind (S)	2,0	(1) (3)
31	08:20	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	fishy smell	exposed shores	Intermittent / Continuous	Downwind / Upwind (\$)	0.4	(3)
32	08;27	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind (S)	0.3	(1) (3)
33	06:43	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (S)	0.6	(3)
34	06:52	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	O1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	1.5	(3)
35	06;56	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Gontinuous	Downwind / Upwind (S)	1.5	(3)
36	07:53	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	@1/2/3/4	N/A	N/A	Intermittent /- Gontinuous	Downwind / Upwind (S)	3.8	(2)
37	05:28	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	O1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	3.7	(2)
38	05:30	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/①2/3/4	sewage	marine water	Intermittent /-Continuous	Downwlnd / Upwind (SE)	3.8	(2)
39	05:35	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (SE)	2.4	(2)
40	05:38	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.012/3/4	sewage	marine water	Intermittent /-Continuous	Downwind / Upwind (SE)	1.8	(2)

#Note; Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows;

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 26 February 2013

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nulsance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: Ol-4 / Ol-2

General Information

Temperature:

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
41	07:24	High Tide / Low Tide	Sunny / Fine / Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind-/ Upwind-	0.0	(3)
42	07:17	High-Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/10/2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / ⊎pwind (SE)	0.5	(3)
43	07:12	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind-/ Upwind (S)	1.3	(3)
44	07:08	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.9	(3)
45	06:02	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Gontinuous	Downwind / Upwind (S)	1.4	(3)
46	05:58	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	① 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	1.3	(3)
47	05:57	High Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Continuous	Downwind / Upwind (SE)	0.6	(3)
48	05:49	High Tide / Low Tide	Sunny / Fine / Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (SW)	0.3	(3)
49	07:44	High Tide / Low Tide	Sunny / Fine Cloudy / Ralny	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	0.9	(3)
50	07:46	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0. 12/3/4	sewage	water at Kai Tak Nullah	Intermittent /- Continuous	Downwind-/ Upwind (S)	0.1	(3)
51	07:47	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	① 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	2.3	(3)
52	07;49	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	1.3	(3)
53	05:51	High-Tide / Low Tide	Sunny / Fine / Cloudy Rainy	1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	1.5	(3)
54	05:53	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/12/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SW)	1.6	(3)
55	06:00	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (SW)	1.2	(3)
56	06:04	High-Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	1.6	(3)
57	07:09	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Continuous	Downwind / Upwind (S)	1,0	(3)
58	07:11	High Tide / Low Tide	Sunny / Fine / Cloud / Rainy	0. 12/3/4	sewage	water at Kai Tak Nullah	Intermittent-/-Continuous	Downwind / Upwind (S)	0,5	(3)
59	07;16	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent-/-Continuous	Downwind / Upwind (SE)	0.4	(3)
60	07:23	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/10/2/3/4	sewage	water at Kai Tak Nullah	Intermittent /-Continuous	Downwind-/ Upwind-	0.0	(3)

#Note; Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows;

- 0 Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;
- 1 Stight identifiable odour, and stight chance to have odour nuisance;
- 2 Moderate identifiable odour, and moderate chance to have odour nulsance;
- 3 Strong identifiable, likely to have odour nuisance
- 4 Extreme severe odour, and unacceptable odour level.

*Description of Odour Characteristics: Sewage or rotten-egg smoll, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

**Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 25 February 2013

	Name .	∕ Signature
Conducted by:	Lee Man Hei	her
Checked by:	Henry Leung	
		T 7

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / -OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date:

25 and 26 February 2013

Temperature:

16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity:

59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
1	17:06	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(SE)	1.1	(2)
2	17:16	High Tide / Low Ti de	Sunny / Fine Cloud / Ralny	0.012/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (S)	2.3	(2)
3	17:20	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2.6	(2)
4	17:24	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	3,1	(2)
5	17:33	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1/2/3/4	N/A	N/A	Intermittent/-Continuous	Downwind / Upwind-(SE)	5,3	(2)
6	17:36	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.1 2/3/4	sewage	Chemical Toilet at SFK's Site Office	Intermittent / Continuous	Downwind / Upwind-(S)	2.7	(2)
7	17:46	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.10/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(E)	1.5	(2)
8	17:51	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.00/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(E)	2.7	(2)
9	17:58	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	2.6	(2)
10	18:01	High Tide / Low Ti de	Sunny / Fine /Cloudy/ Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(S)	3.6	(2)
11	18:04	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent /- Continuous	Downwind / Upwind-(S)	3.1	(2)
12	18;06	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.1 2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2.8	(2)
13	19:16	High Tide / Low Ti de	Sunny / Fine Cloud / Rainy	0/12/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(N)	4.5	(2)
14	19:12	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.0 2/3/4	rubbish and sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.4	(2)
15	19:09	High Tide / Low-Tide	Sunny / Fine Cloud / Rainy	Q 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	3,3	(2)
16	19:07	Hìgh Tide / Ło w Ti de	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	0.9	(2)
17	19:05	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1.4	(2)
18	19:03	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1.9	(2)
19	19:00	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	@1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (W)	0.7	(2)
20	18:53	High Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	()1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.8	(2)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

Remarks: (1) The seawater smell is considered as non-objectionable background smell as quoted in Kai Tak Schedule 3 EIA Report (2) Conducted on 25 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 26 February 2013 (3) Conducted on 27 February 2013 (3) Conducted o

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, Irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / -OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidai Condition	Weather Condition #	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
21	18:50	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent /- Continuous	Downwind-/ Upwind (N)	1.7	(2)
22	18:43	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.5	(2)
23	18;41	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (NW)	2.7	(2)
24	18:39	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	Q 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.9	(2)
25	18;37	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (NW)	2,4	(2)
26	18:34	High Tide / Low Tide	Sunny / Fine / Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1,3	(2)
27	18:30	High Tide / Low-Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (NW)	0.8	(2)
28	18:24	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1,9	(2)
29	18:41	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	0.8	(3)
30	18:49	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1.7	(3)
31	17:11	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	2.0	(3)
32	17:16	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.9	(3)
33	19:04	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.2	(3)
34	19:14	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (S)	0.3	(3)
35	19:24	High Tide / Low Tide	Sunny / Fine Cloud) / Rainy	1/2/3/4	N/A	N/A	Intermittent /- Continuous	Downwind / Upwind (S)	0.1	(3)
36	19:27	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	0.7	(2)
37	19:32	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.0	(2)
38	19:34	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.2	(2)
39	19:39	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	4.3	(2)
40	19:43	High Tide /-Low-Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Gontinuous	Downwind / Upwind (S)	1.3	(2)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate Identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong Identifiable, likely to have odour nulsance

^{4 -} Extreme severe adour, and unacceptable adour level.

^{*}Description of Odour Characteristics: Sowage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, Irritating, fruit, vinegar, etc **Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / -OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date: 25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humildity: 59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
41	18:05	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (W)	1.0	(3)
42	17:58	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	0.0 2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	1.3	
43	17:53	High Tide / Low Ti de	Sunny / Fine Cloud / Rainy	@1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.8	(3)
44	17:50	High Tide /-Lo w Ti de	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)		(3)
45	17:44	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous		1.0	(3)
46	17:40	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Gontinuous	Downwind / Upwind (SE)	0.4	(3)
47	17:39	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	O 1/2/3/4	N/A	N/A		Downwind / Upwind (N)	1.3	(3)
48	17:32	High Tide /-Low-Tide	Sunny / Fine / Cloudy / Rainy	0(1)/2/3/4	sewage		Intermittent / Continuous	Downwind / Upwind (E)	0.5	(3)
49	18:18	High Tide /-Low Tide	Sunny / Fine / Cloud / Rainy	0/12/3/4		water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (NE)	0.7	(3)
50	18:20	High Tide /-Low-Tide	Sunny / Fine Cloudy / Rainy		sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.9	(3)
	 			0.0 2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind-/ Upwind (S)	1.1	(3)
51	18:21	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	1.4	(3)
52	18:23	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SW)	1,5	(3)
53	17:33	High Tide / Low Tide	Sunny / Fine Cloudy / Ralny	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind-/ Upwind (E)	0.5	(3)
54	17:37	High Tide /-Low-Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	1,6	
55	17:42	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	O 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	0.9	(3)
56	17:46	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)		(3)
57	17:51	High Tide / Low Ti de	Sunny / Fine (Cloudy / Rainy	0. 12/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous		0.5	(3)
58	17:52	High Tide /-Low-Tide	Sunny / Fine / Cloudy / Ralny	Q1/2/3/4	N/A	N/A	-	Downwind / Upwind (SE)	1.9	(3)
59	17:59	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	0.0/2/3/4	sewage		Intermittent / Continuous	Downwind / Upwind (E)	1.0	(3)
60	18:06	-	Sunny / Fine Cloudy / Rainy	Q1/2/3/4		water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.7	(3)
			ed in the descending order as follows:	U112/3/4	N/A	N/A	Intermittent / Gontinuous	Downwind / Upwind	0.0	(3)

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

	Name	∫ Signature
Conducted by:	Tang Wing Kwai	Cin
Checked by:	Henry Leung	
	· · · · · · · · · · · · · · · · · · ·	

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smoli, decayed vogetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc **Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: OI-1 / OI-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date:

25 and 26 February 2013

Temperature: 16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity:

59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
1	17:06	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	O1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(SE)	1.1	(2)
2	17:16	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.0 2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2.3	(2)
3	17:20	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	2,6	(2)
4	17:24	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(S)	`3.1	(2)
5	17:33	High Tide / Low Tide	Sunny / Fine (Cloud) / Rainy	1/2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind-(SE)	5.3	(1) (2)
6	17:36	High Tide / Low-Tide	Sunny / Fine (Cloud) / Rainy	0.1 2/3/4	sewage	Chemical Toilet at SFK's Site Office	Intermittent / Continuous	Downwind / Upwind-(S)	2.7	(2)
7	17:46	High Tide / Low-Tide	Sunny / Fine Cloud / Rainy	0.10/2/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (E)	1.5	(2)
8	17:51	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0. 12/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(E)	2.7	(2)
9	17:58	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 01/2/3/4	N/A	N/A	Intermittent / Gentinuous	Downwind / Upwind (SE)	2.6	(2)
10	18:01	High Tide / Low Tide	Sunny / Fine /Cloudy/ Rainy	1 01/2/3/4	N/A	N/A	Intermittent-/ Continuous	Downwind / Upwind-(S)	3.6	(2)
11	18:04	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind-(S)	3,1	(2)
12	18:06	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.0 2/3/4	sewage	marine water	Intermittent / Gontinuous	Downwind / ⊎pwind-(S)	2.8	(2)
13	19:16	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(N)	4.5	(2)
14	19:12	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	0.1 2/3/4	rubbish and sewage	marine water	Intermittent / Continuous	Downwind / Upwind-(SE)	1.4	(2)
15	19:09	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	3,3	(2)
16	19:07	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	0.9	(2)
17	19:05	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (SE)	1.4	(2)
18	19:03	High Tide / Low-Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (SE)	1.9	(2)
19	19:00	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	@1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (W)	0.7	(2)
20	18:53	High Tide / Low Tide	Sunny / Fine /Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.8	(2)

#Note: Odcur intensity is to be divided into 5 levels which are ranked in the descending order as follows:

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: 01-4 / 01-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date:

25 and 26 February 2013

Temperature: 16.6 - 2

16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity:

59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
21	18:50	High Tide / Low Ti de	Sunny / Fine Cloud / Rainy	1 01/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind-/ Upwind (N)	1,7	(2)
22	18:43	High Tide / Low-Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.5	(2)
23	18:41	High Tide / Low-Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (NW)	2.7	(2)
24	18:39	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.9	(2)
25	18:37	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	O1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (NW)	2.4	(2)
26	18:34	High Tide / Low Tide	Sunny / Fine / Cloudy/ Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (N)	1.3	(2)
27	18:30	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind (NW)	0.8	(1) (2)
28	18:24	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.9	(1) (2)
29	18:41	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	①1/2/3/4	seawater smell	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	0.8	(1) (3)
30	18:49	High Tide / Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	seawater smelt	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.7	(1) (3)
31	17:11	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	2.0	(3)
32	17:16	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	Q1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.9	(3)
33	19:04	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	© 1/2/3/4	N/A	· N/A	Intermittent / Continuous	Downwind / Upwind (S)	0.2	(3)
34	19:14	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	Q1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind / Upwind (S)	0,3	(3)
35	19:24	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	1/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (S)	0.1	(3)
36	19:27	High Tide / Łow Tide	Sunny / Fine Cloudy / Rainy	Q 1/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (SE)	0.7	(2)
37	19:32	High Tide / Łow Tide	Sunny / Fine/ Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind /-Upwind-(SE)	1.0	(2)
38	19:34	High Tide / Low Tide	Sunny / Fine / Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	1.2	(2)
39	19:39	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (SE)	4.3	(2)
40	19:43	High Tide /-Low-Tide	Sunny / Fine Cloudy / Ralny	0/102/3/4	sewage	marine water	Intermittent / Continuous	Downwind / Upwind (S)	1.3	(2)

#Note: Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

^{0 -} Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;

^{1 -} Slight identifiable odour, and slight chance to have odour nuisance;

^{2 -} Moderate identifiable odour, and moderate chance to have odour nuisance;

^{3 -} Strong identifiable, likely to have odour nuisance

^{4 -} Extreme severe odour, and unacceptable odour level.

^{*}Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, irritating, fruit, vinegar, etc

^{**}Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

Odour Patrol Record Sheet

Odour Intensity Detected by Panel Members: Ol-4 / Ol-2

General Information

Patrol Locations: Within Kai Tak Development and Ma Tau Kok Waterfront

Date:

25 and 26 February 2013

Temperature: 16.6 - 23.

16.6 - 23.3°C (25 February 2013) and 19.0 - 24.9°C (26 February 2013) (King's Park)

Humidity:

59 - 81 % (25 February 2013) and 76 - 89% (26 February 2013) (General)

Location	Time of Survey	Tidal Condition	Weather Condition	#Odour Intensity	*Odour Characteristics	**Potential Odour Sources	Duration of Odour	Wind Direction	Wind Speed (m/s)	Remarks
41	18:05	High Tide / Low Ti de	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (W)	1.0	(3)
42	17:58	High Tide /-Low-Tide	Sunny / Fine Cloudy / Rainy	0.1 2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	1.3	(3)
43	17:53	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	@1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (\$)	0.8	(3)
44	17:50	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent-/ Continuous	Downwind / Upwind (SE)	1.0	(3)
45	17:44	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.4	(3)
46	17;40	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Gontinuous	Downwind / Upwind (N)	1.3	(3)
47	17:39	High Tide /-Low Tide	Sunny / Fine Cloudy / Rainy	© 1/2/3/4	N/A	N/A	Intermittent-/-Continuous	Downwind / Upwind (E)	0.5	(3)
48	17:32	High Tide /-Low Tide	Sunny / Fine / Cloudy / Rainy	0 🛈 / 2 / 3 / 4	sewage	water at Kal Tak Nullah	Intermittent / Continuous	Downwind / Upwind (NE)	0,7	(3)
49	18;18	High Tide /-Low Tide	Sunny / Fine / Cloud / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.9	(3)
50	18:20	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	0.0 2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind-/ Upwind (S)	1,1	(3)
51	18:21	High Tide / Low Tide	Sunny / Fine Cloudy / Rainy	Q 1/2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (S)	1.4	(3)
52	18:23	High Tide /-Low-Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	intermittent / Continuous	Downwind / Upwind (SW)	1.5	(3)
53	17:33	High Tide /-Low-Tide	Sunny / Fine Cloudy / Rainy	0/102/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind-/ Upwind (E)	0.5	(3)
54	17:37	High Tide /-Low-Tide	Sunny / Fine / Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	1.6	(3)
55	17:42	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (NE)	0.9	(3)
56	17:46	High Tide /-Low-Tide	Sunny / Fine Cloud / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/ Upwind (SE)	0.5	(3)
57	17:51	High Tide /-Low Tide	Sunny / Fine / Cloudy / Rainy	0/12/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	1.9	(3)
58	17:52	High Tide /-Low Tide	Sunny / Fine / Cloudy / Rainy	1/2/3/4	N/A	N/A	Intermittent / Gontinuous	Downwind / Upwind (E)	1.0	(3)
59	17:59	High Tide /-Low Tide	Sunny / Fine Cloud / Rainy	0.00/2/3/4	sewage	water at Kai Tak Nullah	Intermittent / Continuous	Downwind / Upwind (SE)	0.7	(3)
60	18:06	High Tide / Low Ti de	Sunny / Fine Cloudy / Rainy	1 /2/3/4	N/A	N/A	Intermittent / Continuous	Downwind-/-Upwind	0.0	(3)

#Note; Odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

- 0 Not detected. No odour perceived or an odour so weak that it can not be easily characterised or described;
- 1 Slight identifiable odour, and slight chance to have odour nuisance;
- 2 Moderate identifiable odour, and moderate chance to have odour nuisance;
- 3 Strong identifiable, likely to have odour nulsance
- 4 Extreme severe odour, and unacceptable odour level.

*Description of Odour Characteristics: Sewage or rotten-egg smell, decayed vegetables, ammonical, dischargeable odour, putrefaction, sharp, pungent, fish, Irritating, fruit, vinegar, etc

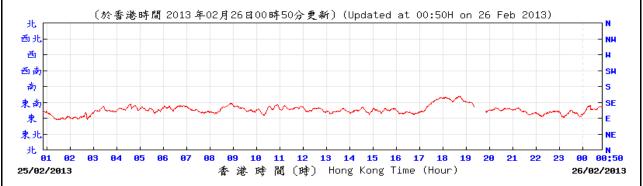
**Potential Odour Source: Exposed sediment, water or sewage; floating debris or material etc

	Name	Signature
Conducted by:	Lee Man Hel	1 hei
Checked by:	Henry Leung	

APPENDIX F
METEOROLOGICAL DATA FROM
HONG KONG OBSERVATORY
STATION DURING ODOUR
SAMPLING AND ODOUR PATROL

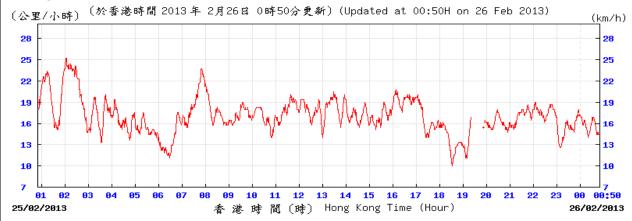
Temperature from Kwun Tong Tempearture/Humidity: (°C) (於香港時間 2013 年02月28日00時50分更新) (Updated at 00:50H on 28 Feb 2013) 27 27 26 26 25 25 23 23 21 21 20 19 19 18 18 17 17 16 01 07 11 12 13 14 15 16 17 18 19 00:50 27/02/2013 香港時間(時) Hong Kong Time (Hour) 28/02/2013 Wind Speed from Kai Tak Wind Speed: (於香港時間 2013年 2月28日 0時50分更新) (Updated at 00:50H on 28 Feb 2013) (公里/小時) (km/h) 21 21 18 18 15 12 9 6 3 01 02 11 12 13 14 15 17 21 00 00:50 27/02/2013 香港時間 (時) Hong Kong Time (Hour) 28/02/2013 Wind Direction from Kai Tak Wind Direction: (於香港時間 2013 年02月28日00時50分更新) (Updated at 00:50H on 28 Feb 2013) 西北 西 南 東 01 02 12 13 14 15 16 17 19 00 00:50 27/02/2013 香港時間 (時) Hong Kong Time (Hour) 28/02/2013 Title Scale Project No. Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and Kwun Tong N.T.S Typhoon Shelter Improvement Works (Phase 1) MA11017 Appendix Date Meteorological data from Hong Kong Observatory Station Feb 13 during Odour Sampling

Meteorological Conditions (King's Park) **Temperature & Humidity** Tempearture/Humidity: (於香港時間 2013 年02月26日00時50分更新) (Updated at 00:50H on 26 Feb 2013) 23 80 75 70 20 65 60 18 55 17 50 16 45 15 **02 0**9 99 00:50 10 11 15 16 18 19 **91** 12 13 14 17 亂 (時) Hong Kong Time (Hour) 26/02/2013 25/02/2013 港時 Wind Direction Wind Direction: 〔於香港時間 2013 年02月26日00時50分更新〕(Updated at 00:50H on 26 Feb 2013) 西北 NH 番 西南 SU 東南 SE 化 10 13 14 15 00:50 25/02/2013 香港時 亂 (時) Hong Kong Time (Hour) 26/02/2013 Wind Speed Wind Speed: (於香港時間 2013 年 2月26日 0時50分更新) (Updated at 00:50H on 26 Feb 2013) (公里/小時) (km/h) 21 21 18 18 **15** 15 12 9 3 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00 00:50 香港時間 (時) Hong Kong Time (Hour) 25/02/2013 26/02/2013 Title Scale Project No. Contract No. KL/2010/02 Kai Tak Development - Kai Tak Approach Channel and N.T.S Kwun Tong Typhoon Shelter Improvement Works Date Appendix Meteorological data from Hong Kong Observatory Station Feb 13 during Odour Patrol


Meteorological Conditions (King's Park) **Temperature & Humidity** Tempearture/Humidity: (°C) (於香港時間 2013 年02月27日00時50分更新) (Updated at 00:50H on 27 Feb 2013) 90 25 85 24 23 88 22 75 70 21 65 20 68 19 18 50 17 **91 00** 00:50 香港時間(時) Hong Kong Time (Hour) 26/02/2013 27/02/2013 **Wind Direction** Wind Direction: (於香港時間 2013 年02月27日00時50分更新) (Updated at 00:50H on 27 Feb 2013) 西北 西南 幽 東南 東北 SE 21 00 00:50 91 10 11 12 13 14 15 16 17 18 22 26/02/2013 香港時間(時) Hong Kong Time (Hour) 27/02/2013 **Wind Speed** Wind Speed: (公里/小時) 18 円 (於香港時間 2013 年 2月27日 0時50分更新) (Updated at 00:50H on 27 Feb 2013) (km/h) 16 16 14 12 12 10 8 10 82 **95** 13 14 15 16 00 00:50 26/02/2013 香港時間 (時) Hong Kong Time (Hour) 27/02/2013

Title	Contract No. KL/2010/02	Scale		Project No.	
	Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works		N.T.S	MA11017	CINOTECH
	Meteorological data from Hong Kong Observatory Station	Date	Feb 13	Appendix F	CINOISCU
	during Odour Patrol		1 00 10	•	

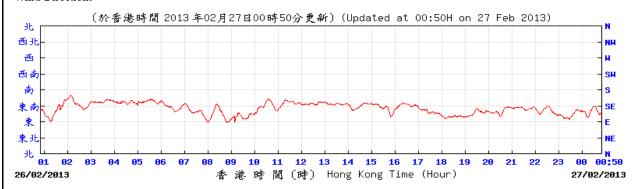
Meteorological Conditions (Kai Tak)


Wind Direction

Wind Direction:

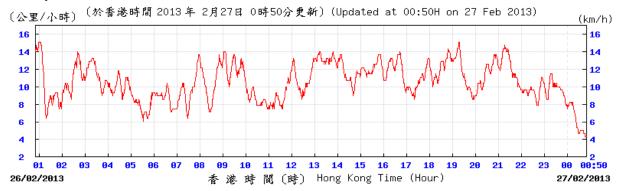
Wind Speed

Wind Speed:



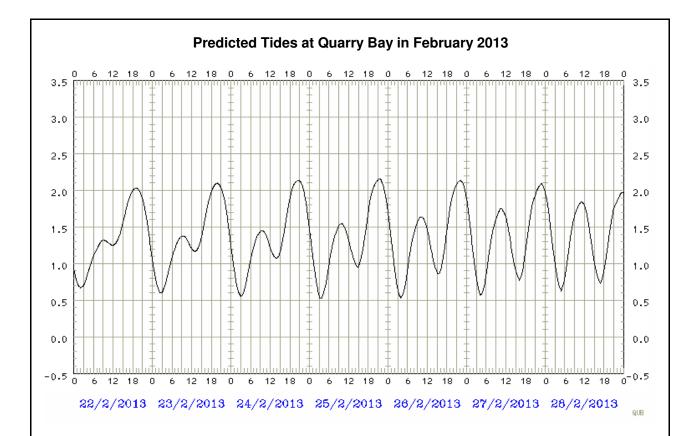
Title	Contract No. KL/2010/02	Scale		Project No.	
	Kai Tak Development - Kai Tak Approach Channel and Kwun Tong Typhoon Shelter Improvement Works		N.T.S	MA11017	CINOTECH
		Date		Appendix	
	Meteorological data from Hong Kong Observatory Station		Feb 13	F	
	during Odour Patrol				

Meteorological Conditions (Kai Tak)


Wind Direction

Wind Direction:

Wind Speed


Wind Speed:

Title	Contract No. KL/2010/02	S
	Kai Tak Development - Kai Tak Approach Channel and	
	Kwun Tong Typhoon Shelter Improvement Works	D
	Meteorological data from Hong Kong Observatory Station	-
	during Odour Patrol	

Scale		Project No.
	N.T.S	MA11017
Date	Feb 13	Appendix F

Title Contract No. KL/2010/02
Kai Tak Development - Kai Tak Approach Channel and
Kwun Tong Typhoon Shelter Improvement Works
Meteorological data from Hong Kong Observatory Station
during Odour Patrol

